Skip to main content
Log in

Effects of Inclined Magnetic Field and Chemical Reaction on Flow of a Casson Nanofluid with Second Order Velocity Slip and Thermal Slip Over an Exponentially Stretching Sheet

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The numerical investigation of the flow of a Casson nanofluid over an exponential stretching sheet with the effects of the inclined magnetic field and chemical reaction is presented. Moreover we considered second order velocity slip and thermal slip. The basic governing partial differential equations are converted into nonlinear ordinary differential equations by employing suitable similarity transformations. The resulting equations are successfully solved by using an implicit finite difference scheme known as Keller-Box method. Comparisons of numerical results have been done with previously published results and found in good agreement. The effects of various non dimensional parameters (magnetic parameter, aligned angle, Casson parameter, second order velocity slip, thermal slip, Prandtl number, Thermophoresis parameter, Brownian motion parameter, Lewis number, chemical reaction parameter) on velocity, temperature and concentration are discussed in detail and presented through graphs. It is observed that the increase in aligned angle decreases the velocity profile. Considerable slip effects are found on velocity and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Crane, L.J.: Flow past a stretching plate. Z. Angew. Math. Phys. 21, 645–647 (1970)

    Article  Google Scholar 

  2. Carragher, P., Crane, L.J.: Heat transfer on a continuous stretching sheet. Z. Angew. Math. Mech. 62, 564–573 (1982)

    Article  Google Scholar 

  3. Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction and blowing. Can. J. Chem. Eng 55, 744–746 (1977)

    Article  Google Scholar 

  4. Dutta, B.K., Roy, P., Gupta, A.S.: Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transf. 2, 89–94 (1985)

    Article  Google Scholar 

  5. Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864–873 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Bhattacharyya, K., Layek, G.C.: Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing. Chem. Eng. Commun. 197, 1527–1540 (2010)

    Article  Google Scholar 

  7. Magyari, E., Keller, B.: Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Appl. Phys. 32, 577–585 (1999)

    Google Scholar 

  8. Elbashbeshy, E.M.A.: Heat transfer over an exponentially stretching continuous surface with suction. Arch. Mech. 53, 643–651 (2001)

    MATH  Google Scholar 

  9. Bidin, B., Nazar, R.: Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. Eur. J. Sci. Res. 34, 710–717 (2009)

    Google Scholar 

  10. Al-Odat, M.Q., Damesh, R.A., Al-Azab, T.A.: Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect. Int. J. Appl. Mech. Eng. 11, 289–299 (2006)

    MATH  Google Scholar 

  11. Sajid, M., Hayat, T.: Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int. Commun. Heat Mass Transf. 35, 347–356 (2008)

    Article  Google Scholar 

  12. Ishak, A.: MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malays. 40, 391–395 (2011)

    Google Scholar 

  13. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticle, development and applications of non- Newtonian Flow. ASME-Publications-Fed. 66, 99–105 (1995)

  14. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  15. Nadeem, S., Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7, 94 (2012)

  16. Bhattacharyya, K., Layek, G.C.: Magneto hydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet. Phys. Res. Int. (2014). doi:10.1155/2014/592536

  17. Mustafa, M., Hayat, T., Obaidat, S.: Boundary layer flow of a nanofluid over an exponentially stretching sheet with convective boundary conditions. Int. J. Numer. Methods Heat Fluid Flow 23, 945–959 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hayat, T., Imtiaz, M., Alsaedi, A., Mansoor, R.: MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions. Chin. Phys. B 23, 054701 (2014)

    Article  Google Scholar 

  19. Sandeep, N., Sulochana, C.: Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption. Appl. Nanosci. (2015). doi:10.1007/s13204-015-0420-z

  20. Hsiao, K.-L.: MHD mixed convection for viscoelastic fluid past a porous wedge. Int. J. NonLin Mech. 46, 1–8 (2011)

    Article  Google Scholar 

  21. Megahed, A.M.: Variable viscosity and slip velocity effects on the flow and heat transfer of power-law fluid over a nonlinearly stretching surface with heat flux and thermal radiation. Rheol. Acta 51, 841–847 (2012)

  22. Khader, M.M., Megahed, A.M.: Numerical studies for flow and heat transfer of the Powell- Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the chebyshev finite difference method. J. Appl. Mech. Tech. Phys. 54, 440 (2013)

    Article  MATH  Google Scholar 

  23. Hsiao, K.-L: Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl. Therm. Eng. (2016). doi:10.1016/j.applthermaleng.2016.08.208

  24. Hsiao, K.-L: Numerical solution for Ohmic Soret–Dufour heat and mass mixed convection of viscoelastic fluid over a stretching sheet with multimedia physical features. J. Aerosp. Eng. (2016). doi:10.1061/(ASCE)AS.19435525.0000681

  25. Casson, N.: A flow equation for pigment oil-suspensions of the printing ink type. In: Mill, C.C. (ed.) Rheology of Disperse Systems, pp. 84–102. Pergamon Press, London (1959)

  26. Nadeem, S., Haq, R.U., Lee, C.: MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci. Iran. B 19, 1550–1553 (2012)

    Article  Google Scholar 

  27. Pramanik, S.: Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Eng. J. 5, 205–212 (2014)

    Article  Google Scholar 

  28. Raju, C.S.K., Sandeep, N., Sugunamma, V., Jayachandra Babu, M., Ramana Reddy, J.V.: Heat and mass transfer in magneto hydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng. Sci. Technol. (2015). doi:10.1016/j.jestch.2015.05.010

  29. Haq, R.U., Nadeem, S., Khan, Z.H., Okedayo, T.G.: Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Cent. Eur. J. Phys. 12, 862–871 (2014)

    Google Scholar 

  30. Hussain, T., Shehzad, S.A., Alsaedi, A., Hayat, T., Ramzan, M.: Flow of Casson nanofluid with viscous dissipation and convective conitions. J. Cent. South Univ. 22, 1132–1140 (2015)

    Article  Google Scholar 

  31. Yoshimura, A., Prudhomme, R.K.: Wall slip corrections for couette and parallel disc viscometers. J. Rheol. 32, 53–67 (1998)

    Article  Google Scholar 

  32. Mukhopadhyay, S., Gorla, R.S.: Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation. Heat Mass Transf. 48, 1773–1781 (2012)

    Article  Google Scholar 

  33. Noghrehabadi, A., Pourrajab, R., Ghalambaz, M.: Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int. J. Therm. Sci. 54, 253–261 (2012)

    Article  Google Scholar 

  34. Ibrahim, W., Shankar, B.: MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput. Fluids 75, 1–10 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mansur, S., Ishak, A.: The magneto hydrodynamic boundary layer flow of a nanofluid past a stretching/shrinking sheet with slip boundary conditions. J. Appl. Math. (2014). doi:10.1155/2014/907152

  36. Fang, T., Yao, S., Zhang, J., Aziz, A.: Viscous flow over a shrinking sheet with a second order slip flow model. Commun. Nonlinear Sci. Numer. Simul. 15, 1831–1842 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Fang, T., Aziz, A.: Viscous flow with second-order slip velocity over a stretching sheet. Z. Naturforschung 65, 1087–1092 (2010)

    Google Scholar 

  38. Wu, L.: A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett 93, 253103 (2008)

    Article  Google Scholar 

  39. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1988)

    Book  MATH  Google Scholar 

  40. Vajravelu, K., Prasad, K.V.: Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties. Nonlinear Anal. Real World Appl. 14, 455–464 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is very thankful to University Grants Commission, India for providing the opportunity to do this research work under UGC-Faculty Development Programme (FDP-XII plan), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Besthapu Prabhakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakar, B., Bandari, S. & Kishore Kumar, C. Effects of Inclined Magnetic Field and Chemical Reaction on Flow of a Casson Nanofluid with Second Order Velocity Slip and Thermal Slip Over an Exponentially Stretching Sheet. Int. J. Appl. Comput. Math 3, 2967–2985 (2017). https://doi.org/10.1007/s40819-016-0273-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0273-5

Keywords

Navigation