Skip to main content
Log in

Exact Solution of T-Difference Radial Schrödinger Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we get an exact discrete analog of the radial Schrödinger equation. We propose a difference equation that exactly corresponds to the standard radial Schrödinger equation. The suggested equation contains \({{{\mathcal {T}}}}\)-differences that are represented by infinite series. From a physical point of view, this discrete equation describes a lattice with long-range interactions of power-law type. From a mathematical point of view, it is a uniquely selected difference equation that exactly corresponds to continuous radial Schrödinger equation. Solution of the suggested difference radial Schrödinger equation is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boole, G.: A Treatise on the Calculus of Finite Differences. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Mickens, R.E.: Difference equation models of differential equations. Math. Comput. Model. 11, 528–530 (1988)

    Article  MathSciNet  Google Scholar 

  3. Mickens, R.E.: Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math. 110, 181–185 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Mickens, R.E.: Nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 8, 823–847 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations World Scientific, Singapore (1994)

  6. Mickens, R.E. (ed.): Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  7. Tarasov, V.E.: Lattice fractional calculus. Appl. Math. Comput. 257, 12–33 (2015)

    MATH  MathSciNet  Google Scholar 

  8. Tarasov, V.E.: Toward lattice fractional vector calculus. J. Phys. A 47(35), 355204 (2014). (51 pages)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tarasov, V.E.: Fractional quantum field theory: from lattice to continuum. Adv. High Energy Phys. 2014, 957863 (2014). 14 pages

    Article  MathSciNet  Google Scholar 

  10. Tarasov, V.E.: Exact discrete analogs of derivatives of integer orders: Differences as infinite series, J. Math. Vol. 2015. Article ID 134842 (2015)

  11. Tarasov, V.E.: Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 3161 (2016)

    Article  MathSciNet  Google Scholar 

  12. Tarasov, V.E.: Exact finite differences: a brief overview. Alm. Mod. Sci. Educ. (Almanah Sovremennoj Nauki i Obrazovaniya) 2016(7), 105–108 (2016). [in Russian]

    Google Scholar 

  13. Mickens, R.E. (ed.): Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  14. Tarasov, V.E.: Exact discretization of Schrodinger equation. Phys. Lett. A 380(1–2), 68–75 (2016)

    Article  MathSciNet  Google Scholar 

  15. Tarasov, V.E.: “Exact discrete analogs of canonical commutation and uncertainty relations”, Mathematics 4(3) (2016) Article ID 44

  16. Tarasov, V.E.: United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 19(3), 625664 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tarasov, V.E.: What discrete model corresponds exactly to gradient elasticity equation? J. Mech. Mater. Struct. 11(4), 329–343 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gaididei, Yu., Flytzanis, N., Neuper, A., Mertens, F.G.: Effect of nonlocal interactions on soliton dynamics in anharmonic lattices. Phys. Rev. Lett. 75, 2240–2243 (1995)

    Article  MATH  Google Scholar 

  19. Mingaleev, S.F., Gaididei, Y.B., Mertens, F.G.: Solitons in anharmonic chains with power-law long-range interactions. Phys. Rev. E 58, 3833–3842 (1998)

    Article  Google Scholar 

  20. Rasmussen, K.O., Christiansen, P.L., Johansson, M., Gaididei, YuB, Mingaleev, S.F.: Localized excitations in discrete nonlinear Schröedinger systems: Effects of nonlocal dispersive interactions and noise. Phys. D 113, 134–151 (1998)

    Article  MATH  Google Scholar 

  21. Gorbach, A.V., Flach, S.: Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms. Phys. Rev. E 72, 056607 (2005). (arXiv:nlin/0502063)

    Article  MathSciNet  Google Scholar 

  22. Korabel, N., Zaslavsky, G.M.: Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction. Phys. A 378(2), 223–237 (2007)

    Article  Google Scholar 

  23. Korabel, N., Zaslavsky, G.M., Tarasov, V.E.: Coupled oscillators with power-law interaction and their fractional dynamics analogues. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1405–1417 (2007). (arxiv:math-ph/0603074)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zaslavsky, G.M., Edelman, M., Tarasov, V.E.: Dynamics of the chain of oscillators with long-range interaction: from synchronization to chaos. Chaos 17(4), 043124 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily E. Tarasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.E. Exact Solution of T-Difference Radial Schrödinger Equation. Int. J. Appl. Comput. Math 3, 2779–2784 (2017). https://doi.org/10.1007/s40819-016-0270-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0270-8

Keywords

Mathematics Subject Classfication

Navigation