Skip to main content
Log in

The Fractional Calculus Methods for the Radial Schrödinger Equation Given by Some Physical Potentials

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In this study the solutions of the radial Schrödinger equation are obtained by means of the fractional calculus. Schrödinger equation is used to predict the future behavior of dynamic systems and, plays an important role in Newton’s laws and law of conservation of energy. Here, we assert the different solution methods for the radial Schrödinger equation given by different physical potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806

    Article  Google Scholar 

  2. Meral FC, Royston TJ, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15:939–945

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Matusu R (2011) Application of fractional order calculus to control theory. Int J Math Models Appl Sci 5(7):1162–1169

    Google Scholar 

  4. Magin R, Feng X, Baleanu D (2008) Fractional calculus in NMR. In: Proceedings of the 17th world congress the international federation of automatic control, Seoul–Korea, July 6–11, pp 9613–9618

  5. Delavari H, Ghaderi R, Ranjbar NA et al (2010) Adaptive fractional PID controller for robot manipulator. In: Proceedings of FDA’10. The 4th IFAC workshop fractional differentiation and its applications, Badajoz–Spain, October 18–20

  6. Yilmazer R, Ozturk O (2013) Explicit solutions of singular differential equation by means of fractional calculus operators. Abstr Appl Anal. https://doi.org/10.1155/2013/715258

    MathSciNet  MATH  Google Scholar 

  7. Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, methods of their solution and some of their applications. Academic Press, Cambridge

    MATH  Google Scholar 

  8. Tu ST, Chyan DK, Srivastava HM (2001) Some families of ordinary and partial fractional differintegral equations. Integral Transform Spec Funct 11:291–302

    Article  MathSciNet  MATH  Google Scholar 

  9. Nishimoto K (1997) Kummer’s twenty-four functions and N-fractional calculus. Nonlinear Anal 30:1271–1282

    Article  MathSciNet  MATH  Google Scholar 

  10. Yilmazer R (2010) N-fractional calculus operator N μ method to a modified hydrogen atom equation. Math Commun 15:489–501

    MathSciNet  MATH  Google Scholar 

  11. Whittaker ET, Watson GN (1927) A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. Fukuhara M (1941) Ordinary differential equations. Iwanami Shoten, Tokyo

    Google Scholar 

  13. Tricomi FG (1954) Funzioni ipergeometriche confluent. Edizioni Cremonese, Roma

    MATH  Google Scholar 

  14. Watson GN (1944) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Wei Y-C (2015) Some solutions to the fractional and relativistic Schrödinger equations. Int J Theor Math Phys 5(5):87–111

    MathSciNet  Google Scholar 

  16. Wang P, Huang C (2015) An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J Comput Phys 293:238–251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Secchi S, Squassina M (2014) Soliton dynamics for fractional Schrödinger equations. Appl Anal 93(8):1702–1729

    Article  MathSciNet  MATH  Google Scholar 

  18. Ambrosetti A, Ruiz D (2006) Radial solutions concentrating on spheres of nonlinear Schrödinger equations with vanishing potentials. Proc R Soc Edinb Sect A Math 136(5):889–907

    Article  MATH  Google Scholar 

  19. Znojil M (1983) On exact solutions of the Schrödinger equation. J Phys A Math Gen 16(2):279

    Article  ADS  MATH  Google Scholar 

  20. Adam Gh, Ixaru LGr, Corciovei A (1976) A first-order perturbative numerical method for the solution of the radial Schrödinger equation. J Comput Phys 22(1):1–33

    Article  ADS  MATH  Google Scholar 

  21. Cheng Y-F, Dai T-Q (2007) Exact solution of the Schrödinger equation for the modified Kratzer potential plus a ring-shaped potential by the Nikiforov–Uvarov method. Phys Scr 75(3):274

    Article  MathSciNet  MATH  Google Scholar 

  22. Aygun M, Bayrak O, Boztosun I (2007) Solution of the radial Schrödinger equation for the potential family V(r) = A/r 2 − B/r + Cr κ using the asymptotic iteration method. J Phys B At Mol Opt Phys 40(3):537

    Article  ADS  Google Scholar 

  23. Dong S-H, Qiang W-C, Sun G-H et al (2007) Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential. J Phys A Math Theor 40(34):10535

    Article  ADS  MATH  Google Scholar 

  24. Thomas RM, Simos TE, Mitsou GV (1996) A family of Numerov-type exponentially fitted predictor–corrector methods for the numerical integration of the radial Schrödinger equation. J Comput Appl Math 67(2):255–270

    Article  MathSciNet  MATH  Google Scholar 

  25. Ikhdair SM, Sever R (2008) Exact solutions of the modified Kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by Nikiforov–Uvarov method. Int J Mod Phys C 19(2):221

    Article  ADS  MATH  Google Scholar 

  26. Ikhdair SM, Sever R (2007) Exact solutions of the radial Schrödinger equation for some physical potentials. Cent Eur J Phys 5(4):516–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okkes Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, O. The Fractional Calculus Methods for the Radial Schrödinger Equation Given by Some Physical Potentials. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 571–577 (2019). https://doi.org/10.1007/s40010-018-0499-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0499-1

Keywords

Mathematics Subject Classification

Navigation