Skip to main content
Log in

Static Vacuum Extensions With Prescribed Bartnik Boundary Data Near a General Static Vacuum Metric

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We introduce the notions of static regular of type (I) and type (II) and show that they are sufficient conditions for local well-posedness of solving asymptotically flat, static vacuum metrics with prescribed Bartnik boundary data. We then show that hypersurfaces in a very general open and dense family of hypersurfaces are static regular of type (II). As applications, we confirm Bartnik’s static vacuum extension conjecture for a large class of Bartnik boundary data, including those that can be far from Euclidean and have large ADM masses, and give many new examples of static vacuum metrics with intriguing geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

Notes

  1. Our work is inspired by interesting ideas in [5, 8]. On the other hand, we are unable to fully verify Theorem 1.1 in [5]; specifically, the claim on p. 3094 asserts that if a kernel element \(k={\mathcal {L}}_{Z} g\) in M with \(Z=0\) on \(\partial M\), then \(Ker (D\Pi ) =0\). Note that Z need not be asymptotic to zero, as it can be asymptotic to any Euclidean Killing vector field. Thus, even when k satisfies an elliptic gauge, implying that Z satisfies an elliptic equation, Z need not be zero, which leads to a nontrivial finite-dimensional kernel. This phenomenon arises from the structure at infinity of asymptotically flat manifolds. In [9] and this paper, we handle that extra finite-dimensional kernel. In addition, we provide a rigorous description of the diffeomorphism group acting on asymptotically flat metrics, involving an additional orthogonal gauge (see Lemma 3.7), a feature absent in [8, Theorem 1.1].

  2. When \(n=3\), the fall-off rate of X is \(1-q>0\), and hence \({{\mathcal {X}}}(M\setminus \Omega )\) can be equivalently defined without including \(Z=Z^{(i)}\) the translation vectors.

  3. In [9] the notation S(gu) was used to denote a different (but related) operator, which is \((R'|_{g})^*(u)\) below.

  4. Technically speaking, the notations P(hv), Q(hv) should have the subscript (gu) to specify their dependence on (gu), but for the rest of the paper we will only consider the case that (gu) is an arbitrary but fixed static vacuum pair \(({\bar{g}}, {\bar{u}})\), and thus we omit the subscript.

  5. Let \(\xi (x)\) be a positive smooth weight function such that \(\xi (x) = |x|^{2-\delta '-\tfrac{n}{2}}\) outside a compact subset of M. The \({{\mathcal {L}}}^{2}_{\delta '-2}(M\setminus \Omega )\)-norm is defined as the sum of the usual \({{\mathcal {L}}}^{2}\)-norm on a compact subset of \(B\subset M\) and the weighted norm in the asymptotically flat end \(M\setminus B\):

    $$\begin{aligned} {\Vert u \Vert _{{{\mathcal {L}}}^{2}_{\delta '-2}(M\setminus \Omega )}= \left( \int _{M\setminus \Omega } \big (|u(x)| \xi (x) \big )^{2} \, \textrm{dvol}\right) ^{\frac{1}{2}}.} \end{aligned}$$
  6. The notations unfortunately become overloaded. Recall that \((\nabla ^\ell _{\nu } \textrm{Ric})'(h) \) denotes the linearized \(\nabla ^\ell _{\nu } \textrm{Ric}\), and note \(\nabla ^{\ell }_{\nu } (\textrm{Ric}'(h))\) represents the \(\ell \)th covariant derivative in \(\nu \) of \(\textrm{Ric}'(h)\). The claimed identity says that “taking the \(\nu \)-covariant derivative” and “linearizing” are commutative under the assumption of h.

  7. The slight technicality arises to avoid a potential “loss of derivatives” issue. Some coefficients in the third equation of \(\overline{T^\textsf {G} }\) are only \({\mathcal {C}}^{0,\alpha }\), e.g. \(\textrm{Ric}_{g}\). If we use the space \({{\mathcal {X}}}(M\setminus \Omega )\) (of \({\mathcal {C}}^{3,\alpha }\)-regularity) instead of \({\widehat{{{\mathcal {X}}}}}\), the codomain of the map may still be only in \({\mathcal {C}}^{0,\alpha }_{-q}\), and the map cannot be surjective.)

References

  1. Abraham, R., Marsden, J.E., Raţiu, T.: Manifolds, tensor analysis, and applications, Global Analysis Pure and Applied: Series B, vol. 2, Addison-Wesley Publishing Co., Reading, Mass., (1983)

  2. An, Z., Huang, L.-H.: New asymptotically flat static vacuum metrics with near Euclidean boundary data, J. Math. Phys. 63(5), (2022)

  3. Anderson, M.T.: The Bartnik quasi-local mass conjectures, arXiv:2308.01202 [math.DG]

  4. Anderson, M.T.: On boundary value problems for Einstein metrics. Geom. Topol. 12(4), 2009–2045 (2008)

    Article  MathSciNet  Google Scholar 

  5. Anderson, Michael T.: Local existence and uniqueness for exterior static vacuum Einstein metrics. Proc. Amer. Math. Soc. 143(7), 3091–3096 (2015)

    Article  MathSciNet  Google Scholar 

  6. Anderson, M.T.: Recent progress and problems on the Bartnik quasi-local mass. Pure Appl. Math. Q. 15(3), 851–873 (2019)

    Article  MathSciNet  Google Scholar 

  7. Anderson, M.T., Jauregui, J.L.: Embeddings, immersions and the Bartnik quasi-local mass conjectures. Ann. Henri Poincaré 20(5), 1651–1698 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Anderson, M.T., Khuri, M.A.: On the Bartnik extension problem for the static vacuum Einstein equations. Class. Quant. Grav. 30(12), 33 (2013)

    Article  MathSciNet  Google Scholar 

  9. An, Z., Huang, L.-H.: Existence of static vacuum extensions with prescribed Bartnik boundary data. Camb. J. Math 10, 1–68 (2022)

    Article  MathSciNet  Google Scholar 

  10. Bartnik, R.: Energy in general relativity, Tsing Hua lectures on geometry & analysis (Hsinchu, 1990–1991), pp. 5–27. Int. Press, Cambridge, MA (1997)

  11. Bartnik, R.: Mass and 3-metrics of non-negative scalar curvature, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, pp. 231–240 (2002)

  12. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  13. Bartnik, R.: A new definition of quasi-local mass. Phys. Rev. Lett. 62, 2346–2348 (1989)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  14. Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Differential Geom. 37(1), 31–71 (1993)

    Article  MathSciNet  Google Scholar 

  15. Bartnik, R.: Phase space for the Einstein equations. Comm. Anal. Geom. 13(5), 845–885 (2005)

    Article  MathSciNet  Google Scholar 

  16. Bers, L., John, F., Schechter, M.: Partial differential equations, Lectures in Applied Mathematics, vol. 3, American Mathematical Society, Providence, R.I., (1979), With supplements by Lars Gȧrding and A. N. Milgram, With a preface by A. S. Householder, Reprint of the 1964 original

  17. Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)

    Article  MathSciNet  Google Scholar 

  18. Bunting, G.L., Masood-ul Alam, A.K.M.: Nonexistence of multiple black holes in asymptotically Euclidean static vacuum space-time. Gen. Relativ. Gravit. 19(2), 147–154 (1987)

  19. Cederbaum, C., Rinne, O., Strehlau, M.: A flow approach to Bartnik’s static metric extension conjecture in axisymmetry. Pure Appl. Math. Q. 15(2), 611–666 (2019)

    Article  MathSciNet  Google Scholar 

  20. Chaljub-Simon, A., Choquet-Bruhat, Y.: Problèmes elliptiques du second ordre sur une variété euclidienne à l’infini. Ann. Fac. Sci. Toulouse Math. (5) 1(1), 9–25 (1979)

  21. DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. (4) 14(3), 249–260 (1981)

  22. Huang, L.-H.: Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics. Comm. Math. Phys. 300(2), 331–373 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Huang, L.-H., Martin, D., Miao, P.: Static potentials and area minimizing hypersurfaces. Proc. Amer. Math. Soc. 146(6), 2647–2661 (2018)

    Article  MathSciNet  Google Scholar 

  24. Huisken, G., Yau, S.-T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124(1–3), 281–311 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ionescu, A.D., Klainerman, S.: On the local extension of Killing vector-fields in Ricci flat manifolds. J. Amer. Math. Soc. 26(2), 563–593 (2013)

    Article  MathSciNet  Google Scholar 

  26. Israel, W.: Event horizons in static electrovac space-times. Comm. Math. Phys. 8(3), 245–260 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lockhart, Robert B., McOwen, Robert C.: Elliptic differential operators on noncompact manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(3), 409–447 (1985)

  28. Metzger, J.: Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature. J. Differential Geom. 77(2), 201–236 (2007)

    Article  MathSciNet  Google Scholar 

  29. Miao, P.: Some recent developments of the bartnik mass, Proceedings of the Fourth International Congress of Chinese Mathematicians, vol. III, High Educational Press, Beijing, pp. 331–340 (2007)

  30. Miao, Pengzi: On existence of static metric extensions in general relativity. Comm. Math. Phys. 241(1), 27–46 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. Morrey, C.B. Jr: Multiple integrals in the calculus of variations, Classics in Mathematics, Springer-Verlag, Berlin, (2008), Reprint of the 1966 edition

  32. Müller zum Hagen, H.: On the analyticity of static vacuum solutions of Einstein’s equations. Proc. Cambridge Philos. Soc. 67, 415–421 (1970)

  33. Nomizu, K.: On local and global existence of Killing vector fields. Ann. Math. 2(72), 105–120 (1960)

    Article  MathSciNet  Google Scholar 

  34. Robinson, D.C.: A simple proof of the generalization of israel’s theorem. Gen. Relativ. Gravit. 8(8), 695–698 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan-Hsuan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lan-Hsuan Huang was partially supported by the NSF CAREER Award DMS-1452477, DMS-2005588, and DMS-2304966.

Appendices

Appendix A. Formulas of (Linearized) Geometric Operators

Given a Riemannian manifold (Ug), the Bianchi operator \(\beta _{ g}\) and its adjoint operator \(\beta _{g} ^*\) are defined by, for a symmetric (0, 2)-tensor h and a vector field X,

$$\begin{aligned} \beta _{g} h&= -\text {div}_{g} h + \tfrac{1}{2} d \textrm{tr}_{g} h \end{aligned}$$
(A.1)
$$\begin{aligned} \beta ^*_{g} X&= \tfrac{1}{2} \big (L_{X} g - (\text {div}_{g} X )g \big ). \end{aligned}$$
(A.2)

We write the Lie derivative of the Riemannian metric g along a vector field X by

$$\begin{aligned} {\mathcal {D}}_{g} X&= \tfrac{1}{2} L_{X} g. \end{aligned}$$
(A.3)

We record the following basic identities:

$$\begin{aligned} \beta _{g} {\mathcal {D}}_{g} X&= -\tfrac{1}{2} \Delta _{g} X - \tfrac{1}{2} \textrm{Ric}(X, \cdot ) \end{aligned}$$
(A.4)
$$\begin{aligned} \beta _{g} (fh)&= f \beta _{g} h - h(\nabla f, \cdot ) + \tfrac{1}{2} (\text {tr}_{g} h) df\quad \text{ for } \text{ a } \text{ scalar } \text{ function } f. \end{aligned}$$
(A.5)

We frequently use the linearization of geometric quantities or operators. In a smooth manifold U, let g(s) be a smooth family of Riemannian metrics with \(g(0) = g\) and \( g'(0) = h\). We define the linearization of the Ricci tensor at g by \(\textrm{Ric}'|_{g} (h):=\left. {{\,\mathrm{\tfrac{d}{d t}}\,}}\right| _{s=0} \textrm{Ric}_{g(s)}\). The other linearized quantities are denoted in the similar fashion. For example,

$$\begin{aligned} (\nabla ^{2})'|_{g}(h) := \left. {{\,\mathrm{\tfrac{d}{d t}}\,}}\right| _{t=0} \nabla ^{2}_{g(t)} \quad \text{ and } \quad \Delta '|_{g}(h) := \left. {{\,\mathrm{\tfrac{d}{d t}}\,}}\right| _{t=0} \Delta _{g(t)}. \end{aligned}$$

We often omit the subscripts \(|_{g}\) when the context is clear.

Let \(\Sigma \subset U\) be a hypersurface and \(\nu \) be the unit normal to \(\Sigma \). Consider a local frame \(\{ e_0, e_1, \dots , e_{n-1}\}\) such that \(e_0\) is the parallel extension of \(\nu \) along itself near \(\Sigma \). We list those linearized quantities in the local frame (where f is an arbitrary scalar function), see [9, Section 2.1]:

$$\begin{aligned} (\textrm{Ric}'|_{g}(h))_{ij}&=-\tfrac{1}{2} g^{k\ell } h_{ij;k\ell } + \tfrac{1}{2} g^{k\ell } (h_{i k; \ell j} + h_{jk; \ell i} ) - \tfrac{1}{2} (\text {tr}\, h)_{;ij} \nonumber \\&\quad + \tfrac{1}{2} (R_{i\ell } h^\ell _{j} + R_{j\ell } h^\ell _{i} )- R_{ik\ell j} h^{k\ell } \end{aligned}$$
(A.6)
$$\begin{aligned} R'|_{g}(h)&=-\Delta (\text {tr}\, h ) +\text {div}\, \text {div}\, h - h \cdot \textrm{Ric}_{g}\nonumber \\ \big ((\nabla ^{2})'|_{g}(h) f \big )_{ij}&= \tfrac{1}{2} g^{k\ell }f_{,\ell } \big ( h_{ij;k} - h_{jk;i} - h_{ik;j} \big ) \end{aligned}$$
(A.7)
$$\begin{aligned} \big ( \Delta '|_{g}(h) \big )f&= - g^{ik} g^{j\ell }f_{;ij}h_{k\ell } + g^{ij} \left( -(\text {div}_{g} h)_{i} + \tfrac{1}{2} (\text {tr}_{g} h)_{;i} \right) f_{,j}. \end{aligned}$$
(A.8)

We write \(\nu = \nu _{g}\) for short. We let \(\omega (e_{a}) = h(\nu , e_{a})\) be the one-form on the tangent bundle of \(\Sigma \) and \(\{\Sigma _{t}\}\) be the foliation by g-equidistant hypersurfaces to \(\Sigma \). For tangential directions \(a, b, c \in \{ 1, \dots , n-1\}\) on \(\Sigma \), we have

$$\begin{aligned} \nu '|_{g}(h)&= - \tfrac{1}{2} h(\nu , \nu ) \nu - g^{ab} \omega (e_{a}) e_{b} \end{aligned}$$
(A.9)
$$\begin{aligned} A'|_{g}(h)&= \tfrac{1}{2} (L_{\nu } h)^\intercal - \tfrac{1}{2} L_{\omega } g^\intercal - \tfrac{1}{2} h(\nu , \nu ) A_{g} \nonumber \\&= \tfrac{1}{2}( \nabla _{\nu } h)^\intercal + A_{g}\circ h - \tfrac{1}{2} L_{\omega } g^\intercal - \tfrac{1}{2} h(\nu , \nu ) A_{g} \nonumber \\ H'|_{g}(h)&=\tfrac{1}{2} \nu (\text {tr}\, h^\intercal ) - \text {div}_{\Sigma } \omega - \tfrac{1}{2} h(\nu , \nu ) H_{g} \end{aligned}$$
(A.10)

where \((A\circ h)_{ab} = \frac{1}{2} (A_{ac}h^{c}_{b} + A_{bc} h_{a}^{c})\). In the special case that \(h = L_{X} g\) along \(\Sigma \) where the vector field \(X = \eta \nu + X^\intercal \) for some tangential vector \(X^\intercal \) to \(\Sigma \), we get

$$\begin{aligned} H'|_{g}(L_{X} g)&= - \Delta _{\Sigma } \eta - (|A|^{2}+\textrm{Ric}(\nu , \nu ))\eta + X^\intercal (H). \end{aligned}$$

We also have the following “linearized” Ricatti equation:

$$\begin{aligned} \begin{aligned} \nu (H'|_{g}(h))&= - \tfrac{1}{2} R'(h) + \tfrac{1}{2} R'^\Sigma |_{g^\intercal } (h^\intercal ) + A_{g} \cdot (A_{g} \circ h) \\&\quad - A_{g} \cdot A'(h) -H_{g} H'(h) \\&\quad + \tfrac{1}{4}\big ( - R_{g} +R^\Sigma _{g} - |A_{g}|^{2} - H_{g}^{2}\big )h(\nu , \nu )\\&\quad - \tfrac{1}{2}\Delta _{\Sigma } h(\nu , \nu ) + g^{ab} \omega (e_{a}) e_{b}(H_{g}). \end{aligned} \end{aligned}$$
(A.11)

In the third equation, \(\text {tr}\, h^\intercal \) denotes the tangential trace of h on \(\Sigma _{t}\), defined in a collar neighborhood of \(\Sigma \). For the last equation, the dot \(\cdot \) means the g-inner product, \((A_{g}\circ h)_{ab} = \tfrac{1}{2} (A_{ac} h^{c}_{b}+A_{bc} h^{c}_{a})\), and \(R^\Sigma _{g}, \Delta _{\Sigma }\) are respectively the scalar curvature and the Laplace operator of \((\Sigma , g^\intercal )\).

Appendix B. Spacetime harmonic gauge and analyticity

Let (Mg) be a Riemannian manifold and let \(u>0\) be a scalar function on M. We define the spacetime metric \({\textbf{g}}\) on \({\textbf{N}}:={\mathbb {R}}\times M\) by (in either Riemannian or Lorentzian signature)

$$\begin{aligned} {\textbf{g}} = \pm u^{2} dt^{2} + g. \end{aligned}$$
(B.1)

Recall that we say the pair (gu) is static vacuum if \(S(g, u)=0\) as defined in (1.1). When \(u>0\), the condition is equivalent to that the spacetime metric satisfies \(\textrm{Ric}_\textbf{g}=0\). Thus, we may also refer such \({\textbf{g}}\) as a static vacuum (spacetime) metric.

1.1 Harmonic Gauge

Fix a general background triple \((M, {\bar{g}}, {\bar{u}})\) and thus the background spacetime metric \(\bar{{\textbf{g}}} = \pm {\bar{u}}^{2} dt^{2} + {\bar{g}}\) on \({\textbf{N}}\). Recall the Bianchi operator \(\beta _{\bar{{\textbf{g}}}} \) sends any symmetric (0, 2)-tensor \({{\varvec{k}}}\) on \({\textbf{N}}\) to the covector \(\beta _{\bar{{\textbf{g}}}}{{\varvec{k}}}\), defined by

$$\begin{aligned} \beta _{\bar{{\textbf{g}}}} {{\varvec{k}}}= - \text {div}_{\bar{{\textbf{g}}}} {{\varvec{k}}}+ \tfrac{1}{2} {\varvec{d}} (\text {tr}_{\bar{{\textbf{g}}}}{{\varvec{k}}}). \end{aligned}$$

The following proposition explains the motivation behind the definition of the static-harmonic gauge in Definition 3.5. Note that this fact is not used anywhere else in the paper.

Proposition B.1

For \({\textbf{g}} \) taking the form (B.1),

$$\begin{aligned} \beta _{\bar{{\textbf{g}}}} {\textbf{g}} = \beta _{{\bar{g}}} g + {\bar{u}}^{-2} u du -{\bar{u}}^{-1} g(\nabla _{{\bar{g}}} {\bar{u}}, \cdot ). \end{aligned}$$

That is, in the coordinate t of \({\mathbb {R}}\) and a local coordinate chart \(\{ x_1,\dots , x_{n}\}\) of M

$$\begin{aligned}&\beta _{\bar{{\textbf{g}}}} {\textbf{g}} (\partial _{t})=0\\&\beta _{\bar{{\textbf{g}}}} {\textbf{g}} (\partial _{a} ) =\beta _{{\bar{g}}} g(\partial _{a} ) + {\bar{u}}^{-2} u \partial _{a} u -{\bar{u}}^{-1} g(\nabla _{{\bar{g}}}{\bar{u}}, \partial _{a} )\qquad \text{ for } a=1,\dots , n. \end{aligned}$$

Proof

Let \({\varvec{\nabla }}, \nabla \) be the covariant derivatives of \(\bar{{\textbf{g}}}, {\bar{g}}\), respectively. We have

$$\begin{aligned} {\varvec{\nabla }}_{\partial t} \partial _{t}&= {\mp } {\bar{u}} \nabla {\bar{u}}\\ {\varvec{\nabla }}_{\partial a} \partial _{t}&= {\varvec{\nabla }}_{\partial t} \partial _{a}= {\bar{u}}^{-1} {\partial _{a}} {\bar{u}}\, \partial _{t}\\ {\varvec{\nabla }}_{\partial a} \partial _{b}&= \nabla _{\partial _{a}} \partial _{b}. \end{aligned}$$

Then we compute \(\text {div}_{\bar{{\textbf{g}}}} {{\textbf{g}}}\):

$$\begin{aligned} (\text {div}_{\bar{{\textbf{g}}}} {{\textbf{g}}})(\partial _{t} )&= 0\\ (\text {div}_{\bar{{\textbf{g}}}} {{\textbf{g}}})(\partial _{a} )&= {\bar{u}} ^{-1} g(\nabla {\bar{u}}, \partial _{a}) - {\bar{u}}^{-3} u^{2} \partial _{a} {\bar{u}} + (\text {div}_{{\bar{g}}} g)(\partial _{a}). \end{aligned}$$

Next we compute the trace term:

$$\begin{aligned} \text {tr}_{\bar{{\textbf{g}}}} {\textbf{g}}&= {\bar{u}}^{-2} u^{2} + \text {tr}_{{\bar{g}}} g\\ {\varvec{d}} (\text {tr}_{\bar{{\textbf{g}}}} {\textbf{g}} )&=-2 {\bar{u}}^{-3} u^{2}d{\bar{u}} + 2{\bar{u}}^{-2} u du + d (\text {tr}_{{\bar{g}}} g). \end{aligned}$$

Combining the above identities give

$$\begin{aligned} \beta _{\bar{{\textbf{g}}}} {\textbf{g}}&= -\text {div}_{\bar{{\textbf{g}}}} {\textbf{g}} + \tfrac{1}{2} {\varvec{d}} (\text {tr}_{\bar{{\textbf{g}}}} {\textbf{g}} )\\&=\beta _{{\bar{g}}} g -{\bar{u}} ^{-1} g( \nabla {\bar{u}}, \cdot ) + {\bar{u}}^{-3} u^{2} d {\bar{u}} - {\bar{u}}^{-3} u^{2} d{\bar{u}} + {\bar{u}}^{-2} u du \\&=\beta _{{\bar{g}}} g -{\bar{u}} ^{-1} g( \nabla {\bar{u}}, \cdot ) + {\bar{u}}^{-2} u du. \end{aligned}$$

\(\square \)

If M has nonempty boundary \(\partial M\), then on the boundary \(\partial {\textbf{N}} := {\mathbb {R}}\times \partial M\), the Cauchy boundary data \(({{\textbf{g}}}|_{\partial {\textbf{N}}}, A_\textbf{g})\) of \(\partial \textbf{N}\subset ({\textbf{N}}, {\textbf{g}})\) can be expressed in terms of \( u, \nu ( u)\) and \((g^\intercal , A_{g})\) of \(\partial M \subset (M, g)\).

Proposition B.2

On the boundary \(\partial \textbf{N}\), we have

$$\begin{aligned} \textbf{g} |_{\partial \textbf{N}}&= \pm u^{2} dt^{2} + g^\intercal \\ A_\textbf{g}&= \pm u \nu ( u) dt^{2} + A_{g}. \end{aligned}$$

Consequently, the corresponding linearizations at \(\bar{\textbf{g}}\) along the deformation \(\textbf{h}\), which is generated by an infinitesimal deformation (hv) at \(({\bar{g}}, {\bar{u}})\), are given by

$$\begin{aligned} \textbf{h} |_{\partial \textbf{N}}&= \pm 2 {\bar{u}} v dt^{2} + h^\intercal \\ A'|_{\bar{\textbf{g}}} (\textbf{h})&= \pm \big ( v \nu ({\bar{u}}) + {\bar{u}} (\nu (u))' \big ) dt^{2} + A'|_{g}(h). \end{aligned}$$

Proof

The identity for the induced metric \(\textbf{g}\) is obvious. For \(A_\textbf{g}\), we compute in local frame \(\{ \partial _{t}, \nu , e_1, \dots , e_{n-1}\}\) where \(\nu \) is the unit normal to \(\partial \textbf{N}\) (which coincides with the unit normal for \(\partial M\) and \(e_1, \dots , e_{n-1}\) are tangential to \(\partial M\). Then

$$\begin{aligned} A_\textbf{g} (\partial _{t}, \partial _{t})&= - \textbf{g}( \nu , {{\varvec{\nabla }}}_{\partial _{t}} \partial _{t} ) = \pm u \nu (u)\\ A_\textbf{g} (e_{a}, e_{b})&= - \textbf{g}( \nu , {{\varvec{\nabla }}}_{e_{a}} e_{b}) = A_{g} (e_{a}, e_{b}) \quad \text{ for } a, b = 1, \dots , n-1 \end{aligned}$$

and all other components of \(A_\textbf{g}\) are zero. \(\square \)

1.2 Analyticity

We say a scalar function f is (real) analytic in the coordinate chart \(\{ x_1,\dots , x_{n} \}\) on a manifold M if for each \(p\in M\), there is a neighborhood U of p such that

$$\begin{aligned} f(x) = \sum _{|I|=0, 1, \dots , } \frac{1}{|I|!} \partial ^{I} f(p) (x-p)^{I} \quad \text{ for } \text{ all } x\in U \end{aligned}$$

where I is a multi-index.

A tensor h is said to be analytic in the coordinate chart \(\{ x_1,\dots , x_{n} \}\) if all of its components are analytic. A Riemannian manifold (Mg) is called analytic if it can be covered by coordinate charts \(\{U_{i}\}\) where g is analytic in each chart; and similarly, a hypersurface embedded in (Mg) is called analytic if it is analytic in each \(U_{i}\).

A classical result of Müller zum Hagen [32] says that if the spacetime \((\textbf{N}, \bar{\textbf{g}})\) is static vacuum, then \(\bar{\textbf{g}} \) is analytic in harmonic coordinates. Below, we state and prove a version of the corresponding result for the time-slice \((M, {\bar{g}}, {\bar{u}})\).

Let \((M, {\bar{g}})\) be a Riemannian manifold with a scalar function \({\bar{u}}>0\) on M. A coordinate chart \((x_1,\dots , x_{n})\) on \((M, {\bar{g}}, {\bar{u}})\) is called static-harmonic if

$$\begin{aligned} \Delta x_{k} + {\bar{u}}^{-1} \nabla {\bar{u}} \cdot \nabla x_{k}=0 \text{ for } \text{ all } k =1, \dots , n. \end{aligned}$$

Here and below, the covariant derivatives and curvatures are all with respect to \({\bar{g}}\). In coordinates \(\{ x_1,\dots , x_{n}\}\) we denote the Christoffel symbols \(\Gamma ^{k}:={\bar{g}}^{ij} \Gamma ^{k}_{ij} \) and compute

$$\begin{aligned} \Delta x_{k} + {\bar{u}}^{-1} \nabla {\bar{u}} \cdot \nabla x_{k} = -\Gamma ^{k} + {\bar{u}}^{-1} {\bar{g}}^{ik} \frac{\partial {\bar{u}}}{\partial x_{i}}. \end{aligned}$$

Therefore, a local coordinate chart \(\{ x_1, \dots , x_{n}\}\) is static-harmonic if and only if

$$\begin{aligned} -\Gamma ^{k}+ {\bar{u}}^{-1} {\bar{g}}^{ik} \frac{\partial {\bar{u}}}{\partial x_{i}} =0. \end{aligned}$$

Theorem B.3

Let \((M, {\bar{g}}, {\bar{u}})\) be a static vacuum triple with \({\bar{u}}>0\). Then \({\bar{g}}\) and \({\bar{u}}\) are analytic in static-harmonic coordinates in \(\text {Int}\, M\).

Remark B.4

As a direct consequence of [21, Theorem 2.1], \({\bar{g}}\) and \({\bar{u}}\) are analytic in harmonic coordinates and in geodesic normal coordinates in \(\text {Int}\, M\).

Proof

Let \(\{ y_1, \dots , y_{n}\}\) be an arbitrary local coordinate chart about the point \(p\in \text {Int}\, M\). By standard elliptic theory [16, p. 228], in a neighborhood of p there are solutions \(x_1, \dots , x_{n}\) of

$$\begin{aligned}&\Delta x_{j} - {\bar{u}}^{-1} \nabla {\bar{u}} \cdot \nabla x_{j}=0 \\&x_{j} (p)=0 \; \text{ and } \; \frac{\partial x_{j}}{\partial y_{i} } (p) = \delta _{ij}. \end{aligned}$$

Those functions \(\{ x_1,\dots , x_{n}\}\) are the desired static-harmonic coordinates.

The static vacuum pair satisfies

$$\begin{aligned} \begin{aligned} - \textrm{Ric}+{\bar{u}}^{-1} \nabla ^{2} {\bar{u}}&=0\\ \Delta {\bar{u}}&=0. \end{aligned} \end{aligned}$$
(B.2)

Recall the well-known formula:

$$\begin{aligned} \textrm{Ric}_{ij} = -\frac{1}{2} {\bar{g}}^{rs} \frac{\partial ^{2} {\bar{g}}_{ij}}{\partial x_{r} \partial x_{s}} + \frac{1}{2} \left( {\bar{g}}_{ri} \frac{\partial \Gamma ^{r}}{\partial x_{j}} + {\bar{g}}_{rj} \frac{\partial \Gamma ^{r}}{\partial x_{i} } \right) + {\mathcal {O}}({\bar{g}},\partial {\bar{g}}). \end{aligned}$$

where \( {\mathcal {O}}({\bar{g}},\partial {\bar{g}})\) denotes the terms involving at most one derivative of the metric \({\bar{g}}\). In particular, in the static-harmonic coordinates:

$$\begin{aligned}&- \textrm{Ric}_{ij}+{\bar{u}}^{-1} {\bar{u}}_{;ij}\\&= \frac{1}{2} {\bar{g}}^{rs} \frac{\partial ^{2} {\bar{g}}_{ij}}{\partial x_{i} \partial x_{j}} - \frac{1}{2} \left( {\bar{g}}_{ri} \frac{\partial }{\partial x_{j}} \left( {\bar{u}}^{-1} {\bar{g}}^{\ell r} \frac{\partial {\bar{u}}}{\partial x_{\ell }} \right) + {\bar{g}}_{rj} \frac{\partial }{\partial x_{i}} \left( {\bar{u}}^{-1} {\bar{g}}^{\ell r} \frac{\partial {\bar{u}}}{\partial x_{\ell }} \right) \right) \\&\quad + {\bar{u}}^{-1} {\bar{u}}_{;ij} + {\mathcal {O}}({\bar{g}},\partial {\bar{g}})\\&= \frac{1}{2} {\bar{g}}^{rs} \frac{\partial ^{2}{\bar{g}}_{ij}}{\partial x_{i} \partial x_{j}} + {\mathcal {O}}( {\bar{g}},\partial {\bar{g}}, {\bar{u}}, \partial {\bar{u}}). \end{aligned}$$

Thus, (B.2) is a quasi-linear elliptic system in static-harmonic coordinates, so the solutions \({\bar{g}}_{ij}, {\bar{u}}\) are analytic in static-harmonic coordinates. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Huang, LH. Static Vacuum Extensions With Prescribed Bartnik Boundary Data Near a General Static Vacuum Metric. Ann. PDE 10, 6 (2024). https://doi.org/10.1007/s40818-024-00169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-024-00169-w

Navigation