Skip to main content
Log in

An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

Given a conformally transversally anisotropic manifold (Mg), we consider the semilinear elliptic equation

$$\begin{aligned} (-\Delta _{g}+V)u+qu^2=0\quad \hbox { on}\ M. \end{aligned}$$

We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity \(qu^2\), and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Cătălin I., Cârstea, and Ali, Feizmohammadi: A density property for tensor products of gradients of harmonic functions and applications. arXiv preprint arXiv:2009.11217, 2020

  2. Cârstea, C.ătălin I., Feizmohammadi, Ali: An inverse boundary value problem for certain anisotropic quasilinear elliptic equations. J. Differential Equations 284, 318–349 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cătălin I., Cârstea, Ali, Feizmohammadi, Yavar, Kian, Katya, Krupchyk, and Gunther, Uhlmann: The Calderón inverse problem for isotropic quasilinear conductivities. Adv. Math., 391:Paper No. 107956, 31, 2021

  4. Cârstea, C.ătălin I., Nakamura, Gen, Vashisth, Manmohan: Reconstruction for the coefficients of a quasilinear elliptic partial differential equation. Appl. Math. Lett. 98, 121–127 (2019)

    Article  MathSciNet  Google Scholar 

  5. David, Dos, Santos Ferreira, Yaroslav, Kurylev, Matti, Lassas, Tony, Liimatainen, and Mikko, Salo: The Linearized Calderán Problem in Transversally Anisotropic Geometries. International Mathematics Research Notices, 2020(22):8729–8765, 10 2018

  6. Dos Santos, David, Ferreira, Carlos E., Kenig, Mikko Salo, Uhlmann, Gunther: Limiting carleman weights and anisotropic inverse problems. Inventiones mathematicae 178(1), 119–171 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dos Santos, David, Ferreira, Yaroslav Kurylev, Lassas, Matti, Salo, Mikko: The Calderón problem in transversally anisotropic geometries. J. Eur. Math. Soc. (JEMS) 18, 2579–2626 (2016)

    Article  MathSciNet  Google Scholar 

  8. Ali, Feizmohammadi, Matti, Lassas, and Lauri, Oksanen: Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers. Forum Math. Pi, 9:Paper No. e10, 2021

  9. Feizmohammadi, Ali, Oksanen, Lauri: An inverse problem for a semi-linear elliptic equation in Riemannian geometries. Journal of Differential Equations 269(6), 4683–4719 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bastian, Harrach and Yi-Hsuan, Lin: Simultaneous recovery of piecewise analytic coefficients in a semilinear elliptic equation. arXiv preprint arXiv:2201.04594, 2022

  11. Hervas, David, Sun, Ziqi: An inverse boundary value problem for quasilinear elliptic equations. Comm. Partial Differential Equations 27(11–12), 2449–2490 (2002)

    Article  MathSciNet  Google Scholar 

  12. Peter, Hintz, Gunther, Uhlmann, and Jian, Zhai: An Inverse Boundary Value Problem for a Semilinear Wave Equation on Lorentzian Manifolds. International Mathematics Research Notices, 05 2021. rnab088

  13. Victor Isakov and A Nachman. Global uniqueness for a two-dimensional elliptic inverse problem. Trans.of AMS, 347:3375–3391, 1995

  14. Isakov, Victor, Sylvester, John: Global uniqueness for a semilinear elliptic inverse problem. Communications on Pure and Applied Mathematics 47(10), 1403–1410 (1994)

    Article  MathSciNet  Google Scholar 

  15. Isakov, Victor: On uniqueness in inverse problems for semilinear parabolic equations. Archive for Rational Mechanics and Analysis 124(1), 1–12 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kurylev, Yaroslav, Lassas, Matti, Uhlmann, Gunther: Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations. Inventiones mathematicae 212(3), 781–857 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yavar, Kian and Gunther, Uhlmann: Recovery of nonlinear terms for reaction diffusion equations from boundary measurements. arXiv preprint arXiv:2011.06039, 2020

  18. Katya, Krupchyk and Gunther, Uhlmann: Inverse problems for nonlinear magnetic Schrödinger equations on conformally transversally anisotropic manifolds. arXiv e-prints arXiv:2009.05089, 2020

  19. Krupchyk, Katya, Uhlmann, Gunther: A remark on partial data inverse problems for semilinear elliptic equations. Proc. Amer. Math. Soc. 148(2), 681–685 (2020)

    Article  MathSciNet  Google Scholar 

  20. Yi-Hsuan, Lin.: Monotonicity-based inversion of fractional semilinear elliptic equations with power type nonlinearities. Calculus of Variations and Partial Differential Equations, accepted for publication, 2021

  21. Lai, Ru.-Yu., Lin, Yi-Hsuan.: Inverse problems for fractional semilinear elliptic equations. Nonlinear Analysis 216, 112699 (2022)

    Article  MathSciNet  Google Scholar 

  22. Tony, Liimatainen and Yi-Hsuan, Lin: Uniqueness results for inverse source problems of semilinear elliptic equations. arXiv preprint arXiv:2204.11774, 2022

  23. Yi-Hsuan, Lin, Hongyu, Liu, and Xu, Liu: Determining a nonlinear hyperbolic system with unknown sources and nonlinearity. arXiv preprint arXiv:2107.10219, 2021

  24. Lassas, Matti, Liimatainen, Tony, Lin, Yi-Hsuan., Salo, Mikko: Inverse problems for elliptic equations with power type nonlinearities. Journal de mathématiques pures et appliquées 145, 44–82 (2021)

    Article  MathSciNet  Google Scholar 

  25. Lassas, Matti, Liimatainen, Tony, Lin, Yi-Hsuan., Salo, Mikko: Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations. Revista Matemática Iberoamericana 37, 1553–1580 (2021)

    Article  MathSciNet  Google Scholar 

  26. Yi-Hsuan, Lin, Hongyu, Liu, Xu, Liu, and Shen, Zhang: Simultaneous recoveries for semilinear parabolic systems. arXiv preprint arXiv:2111.05242, 2021

  27. Matti, Lassas, Tony, Liimatainen, Leyter, Potenciano-Machado, and Teemu, Tyni: Stability estimates for inverse problems for semi-linear wave equations on Lorentzian manifolds. arXiv preprint arXiv:2106.12257, 2021

  28. Matti, Lassas, Tony, Liimatainen, and Mikko, Salo: The Calderón problem for the conformal Laplacian. arXiv e-prints 1612.07939, 2016

  29. Lassas, Matti, Liimatainen, Tony, Salo, Mikko: The Poisson embedding approach to the Calderón problem. Math. Ann. 377(1–2), 19–67 (2020)

    Article  MathSciNet  Google Scholar 

  30. Liimatainen, Tony, Lin, Yi-Hsuan., Salo, Mikko, Tyni, Teemu: Inverse problems for elliptic equations with fractional power type nonlinearities. J. Differential Equations 306, 189–219 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  31. Matti, Lassas, Gunther, Uhlmann, and Yiran, Wang: Determination of vacuum space-times from the Einstein-Maxwell equations. arXiv preprint arXiv:1703.10704, 2017

  32. Lassas, Matti, Uhlmann, Gunther, Wang, Yiran: Inverse problems for semilinear wave equations on Lorentzian manifolds. Communications in Mathematical Physics 360, 555–609 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Claudio, Muñoz, and Gunther, Uhlmann: The Calderón problem for quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 37(5):1143–1166, 2020

  34. Ravi, Shankar: Recovering a quasilinear conductivity from boundary measurements. Inverse Problems, 37(1):Paper No. 015014, 24, 2021

  35. Sun, Ziqi, Uhlmann, Gunther: Inverse problems in quasilinear anisotropic media. American Journal of Mathematics 119(4), 771–797 (1997)

    Article  MathSciNet  Google Scholar 

  36. Sun, Ziqi: On a quasilinear inverse boundary value problem. Math. Z. 221(2), 293–305 (1996)

    Article  MathSciNet  Google Scholar 

  37. Sun, Ziqi: Inverse boundary value problems for a class of semilinear elliptic equations. Advances in Applied Mathematics 32(4), 791–800 (2004)

    Article  MathSciNet  Google Scholar 

  38. Ziqi, Sun.: An inverse boundary-value problem for semilinear elliptic equations. Electronic Journal of Differential Equations (EJDE)[electronic only], 37:1–5, 2010

  39. Taylor, Michael.E.: Partial differential equations I. Basic theory, volume 115 of Applied Mathematical Sciences. Springer, New York, second edition, 2011

  40. Uhlmann, Gunther, Zhai, Jian: Inverse problems for nonlinear hyperbolic equations. Discrete Contin. Dyn. Syst. 41(1), 455–469 (2021)

    Article  MathSciNet  Google Scholar 

  41. Uhlmann, Gunther, Zhai, Jian: On an inverse boundary value problem for a nonlinear elastic wave equation. J. Math. Pures Appl. 9(153), 114–136 (2021)

    Article  MathSciNet  Google Scholar 

  42. Wang, Yiran, Zhou, Ting: Inverse problems for quadratic derivative nonlinear wave equations. Communications in Partial Differential Equations 44(11), 1140–1158 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.F gratefully acknowledges support of the Fields institute for research in mathematical sciences. T.L. was supported by the Academy of Finland (Centre of Excellence in Inverse Modeling and Imaging, grant numbers 284715 and 309963). The work of Y.-H. Lin is partially supported by the Ministry of Science and Technology Taiwan, under the Columbus Program: MOST-110-2636-M-009-007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Feizmohammadi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Boundary Determination

We prove that the DN map of the semilinear elliptic equation

$$\begin{aligned} (-\Delta _g+V)u +qu^m=0 \text { in } M, \quad u=f \text { on } \partial M \end{aligned}$$

on a compact smooth Riemannian manifold with boundary determines the formal Taylor series (the jet) of the coefficient q (in the boundary normal coordinates) on the boundary. Here, \(m\ge 2\) is an integer, and V and q are smooth functions on M. We assume also that zero is not a Dirichlet eigenvalue for the operator \(-\Delta _g+V\) on M.

We expect this result to be well-known to experts on the field, but could not find a reference on it, so we offer detailed presentation and its proof.

Proposition A.1

(Boundary determination) For \(m\ge 2\), \(m\in {\mathbb {N}}\), let (Mg) be a compact Riemannian manifold with \(C^\infty \) boundary \(\partial M\) and consider the boundary value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta _g +V) u+qu^m=0 &{} \text { in } M,\\ u= f &{} \text { on } \partial M, \end{array}\right. } \end{aligned}$$
(A.1)

where \(V,\hspace{0.5pt}q\in C^\infty (M)\). Assume that the DN map \(\Lambda _q\) of the equation (A.1) is known for small boundary values. Then \(\Lambda _q\) determines the formal Taylor series of q on the boundary \(\partial M\).

In addition, if \(f\in C^{\infty }(\partial M)\) is so small that (A.1) has a unique small solution, the DN map determines the formal Taylor series of the solution \(u=u_f\) at any point on the boundary.

Proof

Determination of Taylor expansion of q:

We first investigate solutions of our semilinear elliptic equation could be \(C^\infty \)-smooth due to the following observations. Let \(f\in C^{\infty }(\partial M)\). We consider boundary values \(f_0,f\in C^{\infty }(\partial M)\) and \(f_t=f_0 +tf\) and assume that \(\Vert f_0 \Vert _{C^{2,\alpha }(\partial M)}\) and |t| are sufficiently small so that the DN maps at \(f_0\) and \(f_t\) are both well-defined. We denote by \(u_0\) and \(u_t\), the unique solutions of (A.1) with boundary data \(f_0\) and \(f_t\) on \(\partial M\), respectively. In addition, since \(V\in C^\infty (M)\) and \(f,f_0\in C^\infty (\partial M)\), by elliptic regularity \(u_t\) and \(u_0\) are \(C^\infty (M)\) functions.

By linearizing the equation (A.1) at \(t=0\), we obtain

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _g v +\left( V+mqu_0^{m-1}\right) v=0 &{} \text { in } M,\\ v= f &{} \text { on } \partial M, \end{array}\right. } \end{aligned}$$
(A.2)

where \(v=\displaystyle \lim _{t\rightarrow 0}\frac{u_t-u_0}{t}\) and \(u_0\) solves

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta _g +V) u_0+qu_0^m=0 &{} \text { in } M,\\ u_0= f_0 &{} \text { on } \partial M. \end{array}\right. } \end{aligned}$$
(A.3)

Moreover, v is the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _g v+ {\widetilde{q}}v=0 &{} \text { in } M,\\ v=f &{} \text { on } \partial M. \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} {\widetilde{q}}:=V+mqu_0^{m-1} \text { in }M. \end{aligned}$$
(A.4)

Note that \({\widetilde{q}}\in C^\infty (M)\), since \(u_0\in C^\infty (M)\) by elliptic regularity.

Since we know the DN map of the boundary value problem (A.1), we know the DN map of the linearized problem (A.2). This is proven in [24, Proposition 2.1], where it is shown that the DN map is \(C^\infty \) in the Frechét sense. (See also the similar result [22, Theorem 2.1], which deals with local well-posedness and linearizations of (A.1) at \(f_0\) not identically 0.)

It follows by [6, Theorem 8.4.] that we know the formal Taylor series of \({\widetilde{q}}\) on \(\partial M\). In particular, by choosing

$$\begin{aligned} u_0 =f_0=\varepsilon _0>0 \text { on } \partial M, \end{aligned}$$

for some sufficiently small constant \(\varepsilon _0>0\), and noting that

$$\begin{aligned} q=\frac{{\widetilde{q}}-V}{m\varepsilon _0^{m-1}}\text { on } \partial M, \end{aligned}$$

it follows that we know q on the boundary \(\partial M\).

Next we determine first order derivatives of q on the boundary. Given a point \(x_0 \in \partial M\), let \(x=(x_1,\ldots , x_n)\in \partial M\) be boundary normal coordinates near \(x=x_0\) in M. Differentiating (A.4) yields

$$\begin{aligned} \begin{aligned} \partial _{x_n}{\widetilde{q}}=&m\partial _{x_n}(u_0^{m-1})q+m(\partial _{x_n}q)u_0^{m-1} +\partial _{x_n} V\\ =&m(m-1)u_0^{m-2}( \partial _{x_n}u_0 ) q +m(\partial _{x_n}q)u_0^{m-1}+\partial _{x_n} V. \end{aligned} \end{aligned}$$
(A.5)

Since we have already determined the Taylor series of \({{\tilde{q}}}\) on the boundary and

$$\begin{aligned} \partial _{x_n}u_0=\Lambda _q(f_0), \end{aligned}$$

we may determine \(\partial _{x_n}q\) by solving it from (A.5). Since we also know the derivatives of q in tangential directions \(x_k\), where \(k=1,\ldots , n-1\), we have determined all first order derivatives of q on the boundary.

To determine higher order derivatives of q on the boundary, we follow an argument similar to [28, Lemma 3.4]. On a neighborhood of \(x_0\) in M we may write

$$\begin{aligned} Qu_0:=(-\Delta _g +V) u_0+qu_0^m=-\partial _{x_n}^2 u_0+Pu_0, \end{aligned}$$

where P is a non-linear partial differential operator containing derivatives in \(x'\) up to order 2 and in \(x_n\) up to order 1. The coefficients of P depend on pointwise values of q. By expressing

$$\begin{aligned} \partial _{x_n}^2=P-Q \end{aligned}$$

we obtain

$$\begin{aligned} \partial _{x_n}^2u_0=Pu_0-Qu_0=Pu_0. \end{aligned}$$
(A.6)

Since we already know the quantities

$$\begin{aligned} u_0,\ \partial _{x'}u_0,\ \partial _{x'}^2u_0,\ \partial _{x_n}u_0,\ \partial _{x'}\partial _{x_n}u_0,\ q,\ \partial _{x'}q \text { and }\partial _{x_n}q, \end{aligned}$$
(A.7)

it follows from (A.6) that the second derivative \(\partial _{x_n}^2 u_0\) can be also determined. By using this and differentiating (A.5), we may determine second order derivatives of q on the boundary.

The higher order derivatives of q on the boundary can be determined by differentiating (A.6) and using (A.5) in succession, and by using induction.

Determination of Taylor expansions of solutions: Let then \(f\in C^{\infty }(\partial M)\) be small enough so that (A.1) has a unique small solution \(u=u_f\). Since we have determined the formal Taylor series of q on the boundary, the formal Taylor series of u on the boundary is determined by differentiating (A.6) with u in place of \(u_0\). \(\square \)

Appendix B. Proof of the Carleman Estimate with Boundary Terms

In this section, we proceed to prove Lemma 4.6. Let (Mg) be a compact, smooth, transversally anisotropic Riemannian manifold with a smooth boundary and let \(V\in L^{\infty }(M)\). There exists constants \(\tau _0>0\) and \(C>0\) depending only on (Mg) and \(\Vert V\Vert _{L^{\infty }(M)}\) such that given any \(|\tau |>\tau _0\) and any \(v\in C^2(M)\), the following Carleman estimate holds

$$\begin{aligned}{} & {} \Vert e^{-\tau x_1}(-\Delta _g+V)(e^{\tau x_1}v)\Vert _{L^2(M)}+|\tau |^{\frac{3}{2}}\Vert v\Vert _{W^{2,\infty }(\partial M)} +|\tau |^{\frac{3}{2}}\Vert \partial _\nu v\Vert _{W^{1,\infty }(\partial M)}\nonumber \\{} & {} \quad +|\tau |^{\frac{3}{2}}\Vert \partial ^2_\nu v\Vert _{L^\infty (\partial M)} \ge C|\tau |\,\Vert v\Vert _{L^2(M)}, \end{aligned}$$
(B.1)

Proof of Lemma 4.6

We may assume without loss of generality that v is real-valued and also that \(\tau >0\). The proof for the case \(\tau <0\) follows analogously. Throughout this proof, we use the notation C to stand for a generic positive constant that is independent of the parameter \(\tau \). We also write \({\hat{v}}\) to stand for a \(C^2\)-extension of the function v into a slightly larger manifold \({\hat{M}}\Subset {\mathbb {R}}\times M_0\) with smooth boundary, such that \(v\in C^{2}_c({\hat{M}})\) and that there holds

$$\begin{aligned} \Vert {\hat{v}}\Vert _{W^{2,\infty }({\hat{M}}\setminus M)}\le C(\Vert \partial _\nu ^2 v\Vert _{W^{2,\infty }(\partial M)}+\Vert \partial _\nu v\Vert _{W^{2,\infty }(\partial M)}+\Vert v\Vert _{W^{2,\infty }(\partial M)}), \end{aligned}$$
(B.2)

for some constant \(C>0\), only depending on \(({{\hat{M}}},g)\). In order to prove the latter estimate, let us consider the normal coordinate system \((y_1,\ldots ,y_n)=(y_1,y')\) near \(\partial M\) in \({\mathbb {R}}\times M_0\) where we are assuming that \(\partial M\) is given by \(\{y_1=0\}\), and the metric g near \(\partial M\) is given in these coordinates via the expression

$$\begin{aligned} g = (dy_1)^2 + g'(y_1,y'), \end{aligned}$$

where \(g'(y_1,\cdot )\) can be viewed as a family of smooth Riemannian metrics on \(\partial M\), smoothly depending on \(y_1\) for all \(|y_1|<\delta \) sufficiently small. We make the convention that \(y_1>0\) on \({\hat{M}}\setminus M\). Let us now define \({\hat{v}}\) on \({\hat{M}}\) via

$$\begin{aligned} {\hat{v}}= v \quad \hbox { on}\ M,\end{aligned}$$
(B.3)

and

$$\begin{aligned} {\hat{v}}(y)= \left( v(0,y')+ y_1\, \partial _\nu v(0,y') + \frac{y_1^2}{2}\, \partial ^2_\nu v(0,y')\right) \,\eta (y_1), \quad \hbox { }\ y\in (0,\delta )\times \partial M,\nonumber \\ \end{aligned}$$
(B.4)

where \(\eta \) is a smooth non-negative function such that \(\eta (t)=1\) for all \(|t|\le \frac{\delta }{2}\) and \(\eta =0\) for all \(|y_1|\ge \delta \). It is straightforward to see that \({\hat{v}}\in C^2_c({\hat{M}})\). The claimed estimate (B.2) now follows from the definition (B.4).

We return to the goal of proving (B.1) and define

$$\begin{aligned} P_\tau v=e^{-\tau x_1}\Delta _g(e^{\tau x_1}v), \end{aligned}$$
(B.5)

and note that

$$\begin{aligned} P_\tau v= \partial ^2_{x_1} v + \Delta _{g_0}v+2\tau \partial _{x_1}v + \tau ^2v. \end{aligned}$$

We claim that

$$\begin{aligned}{} & {} \left| \int _M P_\tau v\, \partial _{x_1} v\,dV_g\right| + C\tau ^2\Vert v\Vert _{W^{2,\infty }(\partial M)}^2+C\tau ^2\Vert \partial _\nu v\Vert _{W^{2,\infty }(\partial M)}^2\nonumber \\{} & {} \quad +C\tau ^2\Vert \partial ^2_\nu v\Vert _{W^{2,\infty }(\partial M)}^2 \ge 2\tau \Vert \partial _t v\Vert _{L^2(M)}^2. \end{aligned}$$
(B.6)

To show (B.6) we begin by writing

$$\begin{aligned} \begin{aligned} \int _M P_\tau v\, \partial _{x_1} v\,dV_g =&2\tau \int _M |\partial _{x_1} v|^2 \,dV_g \\&+\underbrace{\int _M \partial _{x_1}^2v\,\partial _{x_1} v\, dV_g}_{\text {I}}+\underbrace{\int _M \Delta _{g_0}v\,\partial _{x_1} v\, dV_g}_{\text {II}} +\underbrace{\int _M\tau ^2v\,\partial _{x_1} v\, dV_g}_{\text {III}}. \end{aligned} \end{aligned}$$

Note that \(M \Subset {\mathbb {R}}\times M_0\) and \(dV_g= dx_1\,dV_{g_0}\). We can use integration by parts to bound each of the terms I–III as follows. For I, we first note that

$$\begin{aligned} \int _{{\hat{M}}} \partial _{x_1}^2{{\hat{v}}}\,\partial _{x_1} {{\hat{v}}}\, dV_g=\frac{1}{2}\int _{{{\hat{M}}}} \partial _{x_1}(|\partial _{x_1} {{\hat{v}}}|^2)\,dV_g =0. \end{aligned}$$

Together with the estimate (B.2), we obtain

$$\begin{aligned}{} & {} |\text {I}|= \left| \int _{{{\hat{M}}}\setminus M}\partial _{x_1}^2{{\hat{v}}}\,\partial _{x_1} {{\hat{v}}}\, dV_g\right| \\{} & {} \quad \le C\left( \Vert \partial _\nu ^2 v\Vert ^2_{W^{2,\infty }(\partial M)}+\Vert \partial _\nu v\Vert ^2_{W^{2,\infty }(\partial M)}+\Vert v\Vert ^2_{W^{2,\infty }(\partial M)}\right) . \end{aligned}$$

For II, since \(\left[ \partial _{x_1}, \Delta _g\right] =0\) on \(({{\hat{M}}},g)\), we may apply integration by parts again to deduce that

$$\begin{aligned} \int _{{{\hat{M}}}} \Delta _{g_0}{{\hat{v}}}\,\partial _{x_1} {{\hat{v}}}\, dV_g=0. \end{aligned}$$

Thus, using (B.2), we can show analogously to term I that

$$\begin{aligned} |\text {II}| \le C\left( \Vert \partial _\nu ^2 v\Vert ^2_{W^{2,\infty }(\partial M)}+\Vert \partial _\nu v\Vert ^2_{W^{2,\infty }(\partial M)}+\Vert v\Vert ^2_{W^{2,\infty }(\partial M)}\right) . \end{aligned}$$

Finally for the term III we first note that

$$\begin{aligned} \tau ^2\int _M {{\hat{v}}}\,\partial _{x_1} {{\hat{v}}}\, dV_g=\frac{\tau ^2}{2}\int _M \partial _{x_1}({\hat{v}}^2)\,dV_g=0. \end{aligned}$$

Thus, using (B.2), we have

$$\begin{aligned} |\text {III}|\le C\tau ^2\left( \Vert \partial _\nu ^2 v\Vert ^2_{W^{2,\infty }(\partial M)}+\Vert \partial _\nu v\Vert ^2_{W^{2,\infty }(\partial M)}+\Vert v\Vert ^2_{W^{2,\infty }(\partial M)}\right) . \end{aligned}$$

Combining the previous three bounds yields the claimed estimate (B.6). Using (B.6) and applying the Cauchy-Schwarz inequality

$$\begin{aligned} \left| \int _M P_\tau v\, \partial _{x_1} v\,dV_g\right| \le \frac{1}{4\tau }\Vert P_\tau v\Vert _{L^2(M)}^2 + \tau \Vert \partial _{x_1} v\Vert _{L^2(M)}^2, \end{aligned}$$

we deduce that

$$\begin{aligned}{} & {} \Vert P_\tau v\Vert _{L^2(M)}^2+ C\tau ^3\Vert v\Vert _{W^{2,\infty }(\partial M)}^2+C\tau ^3\Vert \partial _\nu v\Vert _{W^{2,\infty }(\partial M)}^2\nonumber \\{} & {} \quad +C\tau ^3\Vert \partial ^2_\nu v\Vert _{W^{2,\infty }(\partial M)}^2 \ge \tau ^2 \Vert \partial _{x_1} v\Vert _{L^2(M)}^2, \end{aligned}$$
(B.7)

We recall that by the standard Poincaré inequality on \({\hat{M}}\), there exists \(C>0\) such that

$$\begin{aligned} \Vert \partial _{x_1} w\Vert _{L^2({\hat{M}})} \ge C\Vert w\Vert _{L^2({\hat{M}})}\qquad \forall w \in C^1_0({\hat{M}}). \end{aligned}$$

Also, analogously to the proof of the estimate (B.2), given any \(r\in C^1(M)\), there is a \(C^1\)-extension of r into \({\hat{M}}\) such that \({\hat{r}}\in C^1_c({\hat{M}})\) and there holds

$$\begin{aligned} \Vert {\hat{r}}\Vert _{W^{1,\infty }({\hat{M}}\setminus M)} \le C(\Vert \partial _\nu r\Vert _{W^{1,\infty }(\partial M)}+\Vert r\Vert _{W^{1,\infty }(\partial M)}), \end{aligned}$$
(B.8)

for some constant \(C>0\) only depending on \(({\hat{M}},g)\). Combining the latter two bounds, we deduce that given any \(v\in C^1(M)\) there holds

$$\begin{aligned} \Vert \partial _{x_1} v\Vert _{L^2(M)} \ge C_1\Vert v\Vert _{L^2(M)} - C_2\Vert v\Vert _{W^{1,\infty }(\partial M)}-C_3\Vert \partial _\nu v\Vert _{W^{1,\infty }(\partial M)}, \end{aligned}$$
(B.9)

for all \(v\in C^1(M)\), where the positive constants \(C_1\), \(C_2\) and \(C_3\) only depend on (Mg).

Via the bounds (B.7)–(B.9), we deduce that

$$\begin{aligned}{} & {} \Vert (P_\tau -V) v\Vert _{L^2(M)}^2+ C\tau ^3\Vert v\Vert _{W^{2,\infty }(\partial M)}^2+C\tau ^3\Vert \partial _\nu v\Vert _{W^{2,\infty }(\partial M)}^2\nonumber \\{} & {} \quad +C\tau ^3\Vert \partial ^2_\nu v\Vert _{W^{2,\infty }(\partial M)}^2 \ge \tau ^2 \Vert v\Vert _{L^2(M)}^2. \end{aligned}$$
(B.10)

This proves the assertion.

Appendix C. Computations of \({\textbf{D}}_{ik}\)

In the end of this paper, we compute the values \({\textbf{D}}_{ik}\), for different sub-indices \(i,k\in \{1,2,3,4,5\}\). Recalling that

$$\begin{aligned}&\zeta _1=\xi _1, \qquad \zeta _2=\xi _2, \qquad \\&\quad \zeta _3= \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \xi _3 , \quad \zeta _4=\left( 1+\sqrt{\frac{2}{2-\delta }}\right) \xi _4, \\&\quad \zeta _5=\sqrt{\frac{2}{2-\delta }}(\xi _1+\xi _2), \end{aligned}$$

and

$$\begin{aligned}&\overline{\zeta }_1=|\zeta _1 |e_1+ {\textbf{i}}\zeta _1, \quad \overline{\zeta }_2=|\zeta _2 |e_1+{\textbf{i}}\zeta _2, \\&\quad \overline{\zeta }_3=|\zeta _3 |e_1+{\textbf{i}}\zeta _3, \quad \overline{\zeta }_4=-|\zeta _4 |e_1+{\textbf{i}}\zeta _4,\\&\quad \overline{\zeta }_5=-|\zeta _5 |e_1+{\textbf{i}}\zeta _5, \end{aligned}$$

where

$$\begin{aligned}&|\xi _1 |=|\xi _2 |=1, \quad \langle \xi _1 , \xi _2 \rangle =1-\delta ,\\&\quad \xi _3=-\frac{1}{1+\delta }(\xi _1+\delta \xi _2), \quad \xi _4=-\frac{1}{1+\delta }(\delta \xi _1 + \xi _2). \end{aligned}$$

Via straightforward computations, we have

$$\begin{aligned}&\langle \xi _1 , \xi _2\rangle = 1- \delta , \quad \langle \xi _1,\xi _3 \rangle =-\frac{1+\delta -\delta ^2}{1+\delta }, \quad \langle \xi _1, \xi _4\rangle =-\frac{1}{1+\delta }, \\&\quad \langle \xi _2 , \xi _3\rangle = -\frac{1}{1+\delta }, \quad \langle \xi _2,\xi _4 \rangle =-\frac{1+\delta -\delta ^2}{1+\delta }, \text { and } \langle \xi _3,\xi _4 \rangle =\frac{1+\delta +\delta ^2-\delta ^3}{(1+\delta )^2}. \end{aligned}$$

By

$$\begin{aligned} {\textbf{D}}_{ij}=\langle \overline{\zeta }_i+\overline{\zeta }_j, \overline{\zeta }_i+\overline{\zeta }_j \rangle , \end{aligned}$$

for different \(i,k\in \{1,2,3,4,5\}\), direct computations yield that

$$\begin{aligned} \begin{aligned} {\textbf{D}}_{12}=&\left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1+|\zeta _2 |e_1+{\textbf{i}}\zeta _2\right) \cdot \left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1+|\zeta _2 |e_1+{\textbf{i}}\zeta _2\right) \\ =&2 \left( |\zeta _1||\zeta _2|-\langle \zeta _1, \zeta _2 \rangle \right) \\ =&2 \left( |\xi _1||\xi _2|-\langle \xi _1, \xi _2 \rangle \right) = 2\delta , \end{aligned} \end{aligned}$$
(C.1)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{13}=&\left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1 +|\zeta _3 |e_1+{\textbf{i}}\zeta _3\right) \cdot \left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1 +|\zeta _3 |e_1+{\textbf{i}}\zeta _3\right) \\ =&2 \left( |\zeta _1 ||\zeta _3 |-\langle \zeta _1, \zeta _3 \rangle \right) \\ =&2 \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( |\xi _1 | |\xi _3 | -\langle \xi _1, \xi _3 \rangle \right) \\ =&2 \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( 2+2\delta +{\mathcal {O}}(\delta ^2)\right) , \end{aligned} \end{aligned}$$
(C.2)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{14}=&\left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1 -|\zeta _4 |e_1+{\textbf{i}}\zeta _4\right) \cdot \left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1 -|\zeta _4 |e_1+{\textbf{i}}\zeta _4\right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( |\xi _1 ||\xi _4 |+\langle \xi _1 ,\xi _4 \rangle \right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) \frac{\delta +{\mathcal {O}}(\delta ^2)}{1+\delta }, \end{aligned} \end{aligned}$$
(C.3)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{15}=&\left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \cdot \left( |\zeta _1 |e_1+ {\textbf{i}}\zeta _1-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \\ =&-2 \left( |\zeta _1 ||\zeta _5 | + \langle \zeta _1, \zeta _5 \rangle \right) \\ =&-2 \sqrt{\frac{2}{2-\delta }} \left( |\xi _1 ||\xi _1 +\xi _2 | +\langle \xi _1,\xi _1+\xi _2\rangle \right) \\ =&-8+\frac{\delta }{2}+{\mathcal {O}}(\delta ^2), \end{aligned} \end{aligned}$$
(C.4)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{23}=&\left( |\zeta _2 |e_1+{\textbf{i}}\zeta _2+|\zeta _3 |e_1+{\textbf{i}}\zeta _3 \right) \cdot \left( |\zeta _2 |e_1+{\textbf{i}}\zeta _2+|\zeta _3 |e_1+{\textbf{i}}\zeta _3 \right) \\ =&2 \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( |\xi _2 ||\xi _3 | -\langle \xi _2 ,\xi _3\rangle \right) \\ =&2 \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( \frac{2+\delta +{\mathcal {O}}(\delta ^2)}{1+\delta } \right) . \end{aligned} \end{aligned}$$
(C.5)

In order to compute \({\textbf{D}}_{24}\) more carefully, let us recall the Taylor expansion of \(\sqrt{1+\delta }=1+\frac{\delta }{2}-\frac{\delta ^2}{8}+{\mathcal {O}}(\delta ^3)\), then we have

$$\begin{aligned} \begin{aligned} {\textbf{D}}_{24} =&\left( |\zeta _2 |e_1+{\textbf{i}}\zeta _2 -|\zeta _4 |e_1+{\textbf{i}}\zeta _4\right) \cdot \left( |\zeta _2 |e_1+{\textbf{i}}\zeta _2 -|\zeta _4 |e_1+{\textbf{i}}\zeta _4\right) \\ =&-2 \left( |\zeta _2 ||\zeta _4 | +\langle \zeta _2, \zeta _4 \rangle \right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( |\xi _2 ||\xi _4 | +\langle \xi _2, \xi _4 \rangle \right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( \sqrt{1+2\delta -\delta ^2}-(1+\delta -\delta ^2) \right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) \left( 1 +\delta -\delta ^2 +{\mathcal {O}}(\delta ^3)-(1+\delta -\delta ^2) \right) \\ =&-2 \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \frac{{\mathcal {O}}(\delta ^3)}{1+\delta }, \end{aligned} \end{aligned}$$
(C.6)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{25} =&\left( |\zeta _2 |e_1+{\textbf{i}}\zeta _2-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \cdot \left( |\zeta _2 |e_1+{\textbf{i}}\zeta _2-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \\ =&-2 \left( |\zeta _2 ||\zeta _5 | +\langle \zeta _2,\zeta _5 \rangle \right) \\ =&-2\sqrt{\frac{2}{2-\delta }} \left( \sqrt{4-2\delta }+2-\delta \right) \\ =&-8+\delta +{\mathcal {O}}(\delta ^2), \end{aligned} \end{aligned}$$
(C.7)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{34} =&\left( |\zeta _3 |e_1+{\textbf{i}}\zeta _3-|\zeta _4 |e_1+{\textbf{i}}\zeta _4 \right) \cdot \left( |\zeta _3 |e_1+{\textbf{i}}\zeta _3-|\zeta _4 |e_1+{\textbf{i}}\zeta _4 \right) \\ =&-2 \left( |\zeta _3 ||\zeta _4 | + \langle \zeta _3,\zeta _4 \rangle \right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) ^2\left( |\xi _3 ||\xi _4 | + \langle \xi _3,\xi _4 \rangle \right) \\ =&-2\left( 1+\sqrt{\frac{2}{2-\delta }}\right) ^2 \frac{1}{(1+\delta )^2} \left( 2+3\delta -\delta ^3 \right) , \end{aligned} \end{aligned}$$
(C.8)
$$\begin{aligned} \begin{aligned} {\textbf{D}}_{35}=&\left( |\zeta _3 |e_1+{\textbf{i}}\zeta _3-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \cdot \left( |\zeta _3 |e_1+{\textbf{i}}\zeta _3-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \\ =&-2 \left( |\zeta _3 ||\zeta _5 |+\langle \zeta _3 , \zeta _5\rangle \right) \\ =&-\frac{2}{1+\delta } \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \sqrt{\frac{2}{2-\delta }} \left( \sqrt{4-2\delta }(1+\delta +{\mathcal {O}}(\delta ^2)) - 2-\delta +\delta ^2\right) \\ =&-\frac{2}{1+\delta } \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \sqrt{\frac{2}{2-\delta }} \\&\qquad \times \left( (2-\frac{\delta }{2}+{\mathcal {O}}(\delta ^2))(1+\delta +{\mathcal {O}}(\delta ^2)) - 2-\delta +\delta ^2\right) \\ =&-\frac{1}{1+\delta } \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \sqrt{\frac{2}{2-\delta }} \left( \delta +{\mathcal {O}}(\delta ^2) \right) \end{aligned} \end{aligned}$$
(C.9)

and similarly,

$$\begin{aligned} \begin{aligned} {\textbf{D}}_{45}=&\left( -|\zeta _4 |e_1+{\textbf{i}}\zeta _4-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \cdot \left( -|\zeta _4 |e_1+{\textbf{i}}\zeta _4-|\zeta _5 |e_1+{\textbf{i}}\zeta _5 \right) \\ =&2 \left( |\zeta _4 ||\zeta _5 |-\langle \zeta _4, \zeta _5 \rangle \right) \\ =&2 \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \sqrt{\frac{2}{2-\delta }} \left( |\xi _4 ||\xi _1 +\xi _2 |-\langle \xi _4, \xi _1+\xi _2 \rangle \right) \\ =&\frac{2}{1+\delta } \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \sqrt{\frac{2}{2-\delta }} \left( \sqrt{4-2\delta }(1+\delta +{\mathcal {O}}(\delta ^2))+2+\delta -\delta ^2\right) \\ =&\frac{2}{1+\delta } \left( 1+\sqrt{\frac{2}{2-\delta }}\right) \sqrt{\frac{2}{2-\delta }} \left( 4+\frac{5}{2}\delta + {\mathcal {O}}(\delta ^2)\right) . \end{aligned} \end{aligned}$$
(C.10)

Proof of Lemma 5.2

With (C.1)–(C.10) at hand, let us split the analysis into two cases.

(1) By using (C.5), (C.6) and (C.8), we have that \(\frac{1}{{\textbf{D}}_{23}+{\textbf{D}}_{24}+{\textbf{D}}_{34}}\) is a bounded as \(\delta \rightarrow 0\). Similarly, (C.2), (C.3) and (C.8) imply that \(\frac{1}{{\textbf{D}}_{13}+{\textbf{D}}_{14}+{\textbf{D}}_{34}}\) is also bounded as \(\delta \rightarrow 0\). Similarly \(\frac{1}{{\textbf{D}}_{12}+{\textbf{D}}_{13}+{\textbf{D}}_{23}}\) is bounded as \(\delta \rightarrow 0\). On the other hand, by (C.1), (C.3) and (C.6), we observe that \(\frac{1}{{\textbf{D}}_{12}+{\textbf{D}}_{14}+{\textbf{D}}_{24}}={\mathcal {O}}(\delta ^{-1})\). Meanwhile, \({\textbf{D}}_{15}^{-1}\), \({\textbf{D}}_{25}^{-1}\) and \({\textbf{D}}_{45}^{-1}\) are bounded as \(\delta \rightarrow 0\), but \({\textbf{D}}_{35}^{-1}={\mathcal {O}}(\delta ^{-1})\).

(2) Similarly, \(\frac{1}{{\textbf{D}}_{12}}\frac{1}{{\textbf{D}}_{34}}={\mathcal {O}}(\delta ^{-1})\), \(\frac{1}{{\textbf{D}}_{13}}\frac{1}{{\textbf{D}}_{24}}={\mathcal {O}}(\delta ^{-3})\) and \(\frac{1}{{\textbf{D}}_{14}}\frac{1}{{\textbf{D}}_{23}}={\mathcal {O}}(\delta ^{-1})\).

Therefore, combining the above, we conclude that

$$\begin{aligned} \begin{aligned} {\textbf{E}}_\delta =&\left| \frac{1}{{\textbf{D}}_{15}}\left( \frac{1}{{\textbf{D}}_{23}+{\textbf{D}}_{24}+{\textbf{D}}_{34}}\right) + \frac{1}{{\textbf{D}}_{25}}\left( \frac{1}{{\textbf{D}}_{13}+{\textbf{D}}_{14}+{\textbf{D}}_{34}}\right) \right. \\&\qquad + \frac{1}{{\textbf{D}}_{35}}\left( \frac{1}{{\textbf{D}}_{12}+{\textbf{D}}_{14}+{\textbf{D}}_{24}}\right) + \frac{1}{{\textbf{D}}_{45}}\left( \frac{1}{{\textbf{D}}_{12}+{\textbf{D}}_{13}+{\textbf{D}}_{23}}\right) \\&\qquad \left. + \frac{1}{{\textbf{D}}_{12}}\frac{1}{{\textbf{D}}_{34}}+ \frac{1}{{\textbf{D}}_{13}}\frac{1}{{\textbf{D}}_{24}} + \frac{1}{{\textbf{D}}_{14}}\frac{1}{{\textbf{D}}_{23}}\right| \\ \ge&\frac{C_0}{\delta ^3} -\frac{C_1}{\delta ^2}-C_2>0, \end{aligned} \end{aligned}$$

for all sufficiently small \(\delta >0\), where \(C_0\), \(C_1\) and \(C_2\) are some positive constants independent of \(\delta \). Hence, the coefficient \({\textbf{E}}_\delta ={\mathcal {O}}(\delta ^{-3})\ne 0\)

for all sufficiently small \(\delta >0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizmohammadi, A., Liimatainen, T. & Lin, YH. An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds. Ann. PDE 9, 12 (2023). https://doi.org/10.1007/s40818-023-00153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-023-00153-w

Keywords

Navigation