Skip to main content
Log in

Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We construct weak solutions to the ideal magneto-hydrodynamic (MHD) equations which have finite total energy, and whose magnetic helicity is not a constant function of time. In view of Taylor’s conjecture, this proves that there exist finite energy weak solutions to ideal MHD which cannot be attained in the infinite conductivity and zero viscosity limit. Our proof is based on a Nash-type convex integration scheme with intermittent building blocks adapted to the geometry of the MHD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluie, H.: Hydrodynamic and magnetohydrodynamic turbulence: Invariants, cascades, and locality. Ph.D. thesis, Johns Hopkins University (2009)

  2. Aluie, H., Eyink, G.L.: Scale locality of magnetohydrodynamic turbulence. Phys. Rev. Lett. 104(8), 081101 (2010)

    Article  ADS  Google Scholar 

  3. Berger, M.A.: Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41(12B), B167 (1999)

    Article  ADS  Google Scholar 

  4. Biskamp, D.: Nonlinear Magnetohydrodynamics, vol. 1. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  5. Bronzi, A.C., Filho, M.C.Lopes, Lopes, H.J.Nussenzveig: Wild solutions for 2D incompressible ideal flow with passive tracer. Commun. Math. Sci. 13(5), 1333–1343 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckmaster, T.: Onsager’s conjecture almost everywhere in time. Commun. Math. Phys. 333(3), 1175–1198 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Buckmaster, T., Colombo, M., Vicol, V.: Wild solutions of the Navier-Stokes equations whose singular sets in time have hausdorff dimension strictly less than \(1\). arXiv:1809.00600 (2018)

  8. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr., L.: Anomalous dissipation for \(1/5\)-Hölder Euler flows. Ann. Math. 182(1), 127–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows with Onsager-critical spatial regularity. Commun. Pure Appl. Math. 69(9), 1613–1670 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72(2), 227–448 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buckmaster, T., Shkoller, S., Vicol, V.: Nonuniqueness of weak solutions to the SQG equation. Commun. Pure Appl. Math. 72(9), 1809–1874 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. arXiv:1901.09023 (2019)

  13. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 189(1), 101–144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caflisch, R.E., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184(2), 443–455 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheskidov, A., Filho, M C Lopes, Lopes, H J Nussenzveig, Shvydkoy, R.: Energy conservation in two-dimensional incompressible ideal fluids. Commun. Math. Phys. 348(1), 129–143 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cheskidov, A., Luo, X.: Stationary and discontinuous weak solutions of the Navier-Stokes equations. arXiv:1901.07485 (2019)

  18. Colombo, M., De Lellis, C., De Rosa, L.: Ill-posedness of Leray solutions for the Hypodissipative Navier-Stokes equations. Commun. Math. Phys. 362, 659–688 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Constantin, P., Weinan, F., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys 165(1), 207–209 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Constantin, P., Ignatova, M., Nguyen, H.Q.: Inviscid limit for SQG in bounded domains. SIAM J. Math. Anal. 50(6), 6196–6207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin, P., La, J., Vicol, V.: Remarks on a paper by Gavrilov: Grad-shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications. Geom. Funct. Anal. 29(6), 1773–1793 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dai, M.: Non-uniqueness of Leray-Hopf weak solutions of the 3D Hall-MHD system. arXiv:1812.11311 (2018)

  24. Dallas, V., Alexakis, A.: The signature of initial conditions on magnetohydrodynamic turbulence. Astrophys. J. Lett. 788(2), L36 (2014)

    Article  ADS  Google Scholar 

  25. Daneri, S., Székelyhidi Jr., L.: Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  27. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. 16(7), 1467–1505 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. De Lellis, C., Székelyhidi Jr., L.: High dimensionality and h-principle in PDE. Bull. Am. Math. Soc. 54(2), 247–282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. De Lellis, C., Székelyhidi Jr, L.: On turbulence and geometry: from Nash to Onsager. arXiv:1901.02318 (2019)

  32. Escande, D.F.: What is a reversed field pinch? Rotation and momentum transport in magnetized plasmas, pp. 247–86 (2015)

  33. Eyink, G.L.: nergy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Phys. D Nonlinear Phenom. 78(3—-4), 222–240 (1994)

    Article  ADS  MATH  Google Scholar 

  34. Faraco, D., Lindberg, S.: Magnetic helicity and subsolutions in ideal MHD. arXiv:1801.04896 (2018)

  35. Faraco, D., Lindberg, S.: Proof of Taylor’s conjecture on magnetic helicity conservation. arXiv:1806.09526 (2018)

  36. Faraco, D., Lindberg, S., Székelyhidi, L.: Bounded solutions of ideal MHD with compact support in space-time. arXiv:1909.08678 (2019)

  37. Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29(1), 190–197 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Isett, P.: On the endpoint regularity in Onsager’s conjecture. arXiv:1706.01549 (2017)

  39. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188(3), 871–963 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Isett, P., Oh, S.-J.: On nonperiodic Euler flows with Hölder regularity. Arch. Ration. Mech. Anal. 221(2), 725–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Isett, P., Vicol, V.: Hölder continuous solutions of active scalar equations. Ann. PDE 1(1), 1–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kang, E., Lee, J.: Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics. Nonlinearity 20(11), 2681–2689 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Khesin, B., Peralta-Salas, D., Yang, C.: A basis of Casimirs in 3d magnetohydrodynamics. arXiv:1901.04404 (2019)

  44. Klainerman, S.: On Nash’s unique contribution to analysis in just three of his papers. Bull. Am. Math. Soc. 54(2), 283–305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luo, T., Titi, E.S.: on-uniqueness of weak solutions to hyperviscous Navier-Stokes equations - on sharpness of J.-L. Lions exponent. arXiv:1808.07595 (2018)

  46. Luo, X.: Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions. Arch. Rational Mech. Anal. 233, 701–747 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Mininni, P.D., Pouquet, A.: Finite dissipation and intermittency in magnetohydrodynamics. Phys. Rev. E 80(2), 025401 (2009)

    Article  ADS  Google Scholar 

  48. Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35(1), 117–129 (1969)

    Article  ADS  MATH  Google Scholar 

  49. Moffatt, H.K.: Magnetic relaxation and the Taylor conjecture. J. Plasma Phys. 81(6), (2015)

  50. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math., 383–396 (1954)

  51. Novack, M.: Non-uniqueness of weak solutions to the 3D Quasi-Geostrophic equations. arXiv:1812.08734 (2018)

  52. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 9, 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  53. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36(5), 635–664 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Shnirelman, A.I.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tartar, L.: The compensated compactness method applied to systems of conservation laws. In: Systems of nonlinear partial differential equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, pp. 263–285. Reidel, Dordrecht, (1983)

  57. Taylor, J.B.: Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33(19), 1139 (1974)

    Article  ADS  Google Scholar 

  58. Taylor, J.B.: Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58(3), 741 (1986)

    Article  ADS  Google Scholar 

  59. Vishik, S.M., Dolzhanskii, F.V.: Analogs of the euler-lagrange equations and magnetohydrodynamics equations related to lie groups. Sov. Math. Doklady 19, 149–153 (1978)

    MATH  Google Scholar 

  60. Woltjer, L.: On hydromagnetic equilibrium. Proc. Natl. Acad. Sci. USA 44(9), 833 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. USA 44(6), 489 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R.B. was supported by an NSF Graduate Fellowship Grant No. 1839302. T.B. was supported by the NSF grant DMS-1600868. V.V. was supported by the NSF CAREER grant DMS-1911413. The authors are grateful to Theodore Drivas for pointing us to a number of references on magneto-hydrodynamic turbulence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad Vicol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

1.1 Proof of Geometric Lemmas

In this section, we will provide proofs of Lemmas 4.1 and 4.2, following the classical arguments of [8, 28].

Proof of Lemma 4.1

Let \(\Lambda _B = \{ e_1, e_2, e_3, \frac{3}{5}e_1 + \frac{4}{5}e_2, -\frac{4}{5}e_2 - \frac{3}{5}e_3 \}\) and to these vectors, consider the orthonormal bases given by

figure a

We define

$$\begin{aligned} A_1&:= e_2 \otimes e_3 - e_3 \otimes e_2, \quad A_2 := e_3 \otimes e_1 - e_1 \otimes e_3, \quad A_3 := e_1 \otimes e_2 - e_2 \otimes e_1,\\ A_4&:= \left( \frac{4}{5}e_1 - \frac{3}{5}e_2 \right) \otimes e_3 - e_3 \otimes \left( \frac{4}{5}e_1 - \frac{3}{5}e_2 \right) , \quad \\ A_5&:= \left( \frac{3}{5}e_2 - \frac{4}{5}e_3 \right) \otimes e_1 - e_1 \otimes \left( \frac{3}{5}e_2 - \frac{4}{5}e_3 \right) \,. \end{aligned}$$

Using these matrices we can write

$$\begin{aligned} \frac{7}{4}A_1 + \frac{11}{3}A_2 + A_3 + \frac{35}{12}A_4 + \frac{5}{3}A_5 = 0 \,. \end{aligned}$$
(A.1)

Since \(A_1, A_2, A_3\) form a basis for the 3 \(\times \) 3 skew-symmetric matrices, we can express any skew-symmetric matrix A as a unique linear combination \(A = c_1A_1 + c_2A_2 + c_3A_3\). Combining this with (A.1) gives

$$\begin{aligned} \left( \frac{7}{4} + c_1 \right) A_1 + \left( \frac{11}{3} + c_2 \right) A_2 + \left( 1 + c_3 \right) A_3 + \frac{35}{12}A_4 + \frac{5}{3}A_5 = A \,. \end{aligned}$$

Therefore we can define

$$\begin{aligned} \gamma _{1,B}&= \sqrt{\frac{7}{4} + c_1}, \quad \gamma _{2,B} = \sqrt{\frac{11}{3} + c_2}, \quad \gamma _{3,B} = \sqrt{ 1 + c_3}, \quad \gamma _{4,B} = \sqrt{\frac{35}{12}}, \\ \gamma _{5,B}&= \sqrt{\frac{5}{3}} \, . \end{aligned}$$

For \(\varepsilon _B < \sqrt{2}\), the \(\gamma _i\) will be smooth. Therefore it suffices to take \(\varepsilon _B = 1\). \(\square \)

Proof of Lemma 4.2

Proceeding as before let \(\Lambda _u = \{ \frac{5}{13}e_1 \pm \frac{12}{13}e_2, \frac{12}{13}e_1 \pm \frac{5}{13}e_3, \frac{5}{13}e_2 \pm \frac{12}{13}e_3 \}\) and to these vectors, consider the orthonormal bases given by

figure b

Note that \(\Lambda _u \cap \Lambda _B = \emptyset \). Next, note that \(\sum _{k\in \Lambda _u} \frac{1}{2} k_1\otimes k_1 = \mathrm {Id}\), and thus by the implicit function theorem, there exists \(\varepsilon _u\) such that for \(S \in B_{\varepsilon _u}(\mathrm {Id})\), S can be expressed as a linear combination of the \(S_i\) with positive coefficients. See [8, 28] for further details. \(\square \)

Proof of Magnetic Helicity Conservation

In this appendix we give the proof of Theorem 1.3. For \( u, B \in L^3(0,T;L^3(\mathbb {T}^3))\) we have magnetic helicity conservation for (1.1), as in [42]. A simple modification of this argument shows that Leray-Hopf solutions of (1.2) satisfy a magnetic helicity balance (by interpolation we have that \(u, B \in L_{x,t}^{\frac{10}{3}}({\mathbb {T}}^3) \)):

$$\begin{aligned} \int _{{\mathbb {T}}^3 } A \cdot B(t)dx + 2 \mu \int _0^t \int _{{\mathbb {T}}^3} \mathrm {curl\,}B \cdot B(s) dx ds = \int _{{\mathbb {T}}^3} A \cdot B (0) dx. \end{aligned}$$
(B.1)

Assume that \((u_j, B_j)\) is a weak ideal sequence and that \(\mu _j \rightarrow 0\). Using the uniform bounds coming from the total energy inequality (1.3) we have that

$$\begin{aligned} \mu _j \int _0^t \int _{{\mathbb {T}}^3} |\mathrm {curl\,}B_j \cdot B_j| dx ds \le t\mu _j^{\frac{1}{2}} \Vert \mu _j^{\frac{1}{2}} (\mathrm {curl\,}B_j) \Vert _{L_t^{\infty }L_x^2} \Vert B_j\Vert _{L_t^{\infty }L_x^2 } \rightarrow 0 \quad \text { as } j {\rightarrow } \infty \, . \end{aligned}$$

Therefore, passing to the limit in (B.1) (for \(A_j\) and \(B_j\)), we obtain

$$\begin{aligned} \liminf _{j \rightarrow \infty } \int _{{\mathbb {T}}^3 } A_j \cdot B_j (t)dx = \liminf _{j \rightarrow \infty } \int _{{\mathbb {T}}^3 } A_j \cdot B_j (0)dx = \int _{{\mathbb {T}}^3} A \cdot B(0)dx \end{aligned}$$

where the last equality comes from the fact that since \(B_j(0) \rightharpoonup B(0)\) in \(L^2\), \(A_j(0) \rightarrow A(0)\) in \(L^2\) and the product of a weakly convergent sequence and a strongly convergent sequence converges. By Aubin-Lions Lemma with the triple \(L^2 \subset H^{-\frac{1}{2}} \subset H^{-3}\) applied to \(B_j\), we conclude that \(B_j(t)\) has a strongly convergent subsequence in \(C([0,T]; H^{-\frac{1}{2}})\) (also denoted \(B_j(t)\)). This implies \(A_j(t)\) is strongly convergent in \(C([0,T]; {\dot{H}}^{\frac{1}{2}})\). Along this subsequence

$$\begin{aligned} \int _{{\mathbb {T}}^3} A_j \cdot B_j(t) dx= & {} \int _{{\mathbb {T}}^3} |\nabla |^{\frac{1}{2}}A_j \cdot |\nabla |^{-\frac{1}{2}} B_j(t) dx \rightarrow \int _{{\mathbb {T}}^3} |\nabla |^{\frac{1}{2}}A\cdot |\nabla |^{-\frac{1}{2}} B(t) dx \\= & {} \int _{{\mathbb {T}}^3} A \cdot B(t) dx \end{aligned}$$

where we are using that limit of the strongly convergent subsequence must coincide with the weak ideal limit by uniqueness of weak-* limits. Furthermore, we can extend this to the entire sequence to conclude

$$\begin{aligned} \int _{{\mathbb {T}}^3} A(t) \cdot B(t) dx = \int _{{\mathbb {T}}^3} A(0) \cdot B(0) dx \end{aligned}$$

as desired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beekie, R., Buckmaster, T. & Vicol, V. Weak Solutions of Ideal MHD Which Do Not Conserve Magnetic Helicity. Ann. PDE 6, 1 (2020). https://doi.org/10.1007/s40818-020-0076-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-020-0076-1

Navigation