Skip to main content
Log in

Stability of Minkowski Space-Time with a Translation Space-Like Killing Field

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

In this paper we prove the nonlinear stability of Minkowski space-time with a translation Killing field. In the presence of such a symmetry, the \(3+1\) vacuum Einstein equations reduce to the \(2+1\) Einstein equations with a scalar field. We work in generalised wave coordinates. In this gauge Einstein’s equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in this paper is due to the decay in \(\frac{1}{\sqrt{t}}\) of free solutions to the wave equation in 2 dimensions, which is weaker than in 3 dimensions. This weak decay seems to be an obstruction for proving a stability result in the usual wave coordinates. In this paper we construct a suitable generalized wave gauge in which our system has a “cubic weak null structure”, which allows for the proof of global existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. It is more convenient for the estimates to use an integration along lines of constant t and \(\theta \) than lines of constant s and \(\theta \). On the light cone, we have \(t=\frac{s}{2}\), so it is why we evaluate the integral at \(t=\frac{s}{2}\)

References

  1. Alinhac, S.: The null condition for quasilinear wave equations in two space dimensions I. Invent. Math. 145(3), 597–618 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alinhac, S.: An example of blowup at infinity for a quasilinear wave equation. Astérisque (284), 1–91 (2003). Autour de l’analyse microlocale

  3. Andersson, L., Gudapati, N., Szeftel, J.: Global regularity for the 2 + 1 dimensional equivariant Einstein-Wave map system. Ann. PDE (2017). https://doi.org/10.1007/s40818-017-0030-z

    MathSciNet  MATH  Google Scholar 

  4. Ashtekar, A., Bičák, J., Schmidt, B.: Asymptotic structure of symmetry-reduced general relativity. Phys. Rev. D (3) 55(2), 669–686 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. Beck, G.: Zur Theorie binärer Gravitationsfelder. Z. Phys. 33(14), 713–728 (1925)

    Article  ADS  MATH  Google Scholar 

  6. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  7. Choquet-Bruhat, Y., Moncrief, V.: Nonlinear stability of an expanding universe with the \(S^1\) isometry group. In: Partial Differential Equations and Mathematical Physics (Tokyo, 2001), volume 52 of Progr. Nonlinear Differential Equations Appl., pp. 57–71. Birkhäuser Boston, Boston, MA (2003)

  8. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  9. Godin, P.: Lifespan of solutions of semilinear wave equations in two space dimensions. Commun. Partial Differ. Equ. 18(5–6), 895–916 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes. arXiv:1606.04014 (2016)

  11. Hoshiga, A.: The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space. Funkcial. Ekvac. 49(3), 357–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huneau, C.: Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case. Ann. Henri Poincaré 17(2), 271–299 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Huneau, C.: Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II. Asymptot. Anal. 96(1), 51–89 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huneau, C.: Stability in exponential time of Minkowski Space-time with a translation space-like Killing field. Ann. PDE (2016). https://doi.org/10.1007/s40818-016-0012-6

    MathSciNet  MATH  Google Scholar 

  15. John, F.: Blow-up for quasilinear wave equations in three space dimensions. Commun. Pure Appl. Math. 34(1), 29–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984), volume 23 of Lectures in Appl. Math., pp. 293–326. Amer. Math. Soc., Providence, RI (1986)

  17. Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity. Progress in Mathematical Physics, vol. 25. Birkhäuser Boston Inc., Boston (2003)

    Book  MATH  Google Scholar 

  18. Kubo, H., Kubota, K.: Scattering for systems of semilinear wave equations with different speeds of propagation. Adv. Differ. Equ. 7(4), 441–468 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Kubota, K.: Existence of a global solution to a semi-linear wave equation with initial data of noncompact support in low space dimensions. Hokkaido Math. J. 22(2), 123–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindblad, H.: Global solutions of nonlinear wave equations. Commun. Pure Appl. Math. 45(9), 1063–1096 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindblad, H.: Global solutions of quasilinear wave equations. Am. J. Math. 130(1), 115–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lindblad, H., Rodnianski, I.: The weak null condition for Einstein’s equations. C. R. Math. Acad. Sci. Paris 336(11), 901–906 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lindblad, H., Rodnianski, I.: The global stability of Minkowski space–time in harmonic gauge. Ann. Math. (2) 171(3), 1401–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lindblad, Hans, Rodnianski, Igor: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wald, R.: General Relativity. The University of Chicago press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This paper has benefit from the insight of many people. The author would like to thank in particular Jérémie Szeftel, Qian Wang, Spyros Alexakis, Mihalis Dafermos and Igor Rodnianski for the interesting conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Huneau.

Appendices

A Global Existence of Solutions in the Exterior

We denote by \({\bar{C}}\) the complementary of the domain of dependence of \(B(0,R+1)\). Let \(g_{{\mathfrak {a}}}\) be defined by Theorem 1.3. In generalized wave coordinates \(\Box _g x^\alpha = \Box _{g_{{\mathfrak {a}}}} x^{\alpha }\) the system \(R_{\mu \nu }=0\) can be written, with the decomposition \(g=g_{{\mathfrak {a}}} + \widetilde{g}\)

$$\begin{aligned} \Box _g\widetilde{g}_{\mu \nu } = P_{\mu \nu }(g)(\partial \widetilde{g}, \partial \widetilde{g}) + \widetilde{P}_{\mu \nu } (\widetilde{g}, g_{{\mathfrak {a}}}), \end{aligned}$$

where we used the fact that \(g_{{\mathfrak {a}}}\) is Ricci flat. We perform a bootsrap argument: let T be such that we have a solution g of this equation on \({\bar{C}}_T\) where \({\bar{C}}_T\) is the restriction of \({\bar{C}}\) to times less than T, and assume that

$$\begin{aligned}&\Vert v^\frac{1}{2}\partial Z^N \widetilde{g}\Vert _{L^2({\bar{C}}\cap \Sigma _t)} \lesssim \varepsilon (1+t)^\rho , \end{aligned}$$
(A.1)
$$\begin{aligned}&\Vert v_1^\frac{1}{2} \partial Z^{N-2} \widetilde{g}\Vert _{L^2({\bar{C}}\cap \Sigma _t)} \lesssim \varepsilon . \end{aligned}$$
(A.2)

where

$$\begin{aligned} v(q)= & {} (1+|q|)^{2+2\delta '},\\ v_1(q)= & {} (1+|q|)^{2+2\delta '-2\sigma }. \end{aligned}$$

Thanks to Klainerman-Sobolev estimates (which are still valid in a region \({\bar{C}}\cap \Sigma _t\)) we have

$$\begin{aligned} |\partial Z^{N-2}\widetilde{g}|&\lesssim \frac{\varepsilon }{(1+s)^{\frac{1}{2}-\rho }(1+|q|)^{\frac{3}{2}+\delta '}}, \nonumber \\ |\partial Z^{N-3}\widetilde{g}|&\lesssim \frac{\varepsilon }{(1+s)^{\frac{1}{2}}(1+|q|)^{\frac{3}{2}+\delta '-\sigma }},\nonumber \\ |Z^{N-2}\widetilde{g}|&\lesssim \frac{\varepsilon }{(1+s)^{\frac{1}{2}-\rho }(1+|q|)^{\frac{1}{2}+\delta '}}, \end{aligned}$$
(A.3)
$$\begin{aligned} |\partial Z^{N-3}\widetilde{g}|&\lesssim \frac{\varepsilon }{(1+s)^{\frac{1}{2}}(1+|q|)^{\frac{1}{2}+\delta '-\sigma }}. \end{aligned}$$
(A.4)

Thanks to the wave coordinate condition

$$\begin{aligned} |Z^{N-3}\widetilde{g}_{{\mathcal {T}} {\mathcal {T}}}|&\lesssim \frac{\varepsilon }{(1+s)^{\frac{3}{2}-\rho }(1+|q|)^{-\frac{1}{2}+\delta '}}, \end{aligned}$$
(A.5)
$$\begin{aligned} | Z^{N-4}\widetilde{g}_{{\mathcal {T}} {\mathcal {T}}}|&\lesssim \frac{\varepsilon }{(1+s)^{\frac{3}{2}}(1+|q|)^{-\frac{1}{2}+\delta '-\sigma }}. \end{aligned}$$
(A.6)

To improve (A.1) we perform the energy estimate in the background metric, in the region \({\bar{C}}_t\). We obtain

$$\begin{aligned}&\int _{\Sigma _t} wQ_{TT}+ \int _{\partial {\bar{C}}} wQ_{T{\mathcal {L}}} +C\int _0^t \int w'(q) ({\bar{\partial }} \widetilde{g})^2\\&\quad \lesssim \int _0^t \frac{1}{1+\tau }\int Q_{TT} + \int _0^t \int |\partial _t Z^I \widetilde{g}||\Box _g Z^I \widetilde{g}| \end{aligned}$$

where \({\mathcal {L}}\) is a null vector tangent to \(\partial {\bar{C}}\) and Q is the energy momentum tensor for \(\Box _g\)

$$\begin{aligned} Q_{\alpha \beta }=\partial _\alpha Z^I \widetilde{g} \partial _\beta Z^I \widetilde{g}-\frac{1}{2}g_{\alpha \beta }g^{\mu \nu }\partial _\mu Z^I \widetilde{g} \partial _\nu Z^I \widetilde{g}. \end{aligned}$$

Consequently

$$\begin{aligned} Q_{T{\mathcal {L}}}=T(Z^I \widetilde{g}){\mathcal {L}}(Z^I \widetilde{g})-\frac{1}{2}g_{T{\mathcal {L}}}({\mathcal {L}}(Z^I \widetilde{g}) \underline{{\mathcal {L}}} (Z^I \widetilde{g})+e_\theta (Z^I \phi )^2) \end{aligned}$$

where \(\underline{{\mathcal {L}}}\) is null such that \(g(\underline{{\mathcal {L}}},{\mathcal {L}})=-2\) and \(e_\theta \) is tangent to \({\bar{C}}\) and orthogonal to \({\mathcal {L}}\) and \(\underline{{\mathcal {L}}}\). We have

$$\begin{aligned} Q_{T{\mathcal {L}}}&=\frac{1}{2}g_{T{\mathcal {L}}}\underline{{\mathcal {L}}} (Z^I \widetilde{g}){\mathcal {L}}(Z^I \widetilde{g})+\frac{1}{2}g_{T \underline{{\mathcal {L}}}}{\mathcal {L}}(Z^I \widetilde{g}){\mathcal {L}}(Z^I \widetilde{g}) +g_{Te_\theta }{\mathcal {L}}(Z^I \widetilde{g})e_\theta (Z^I \widetilde{g})\\&\qquad -\frac{1}{2}g_{T{\mathcal {L}}}({\mathcal {L}}(Z^I \widetilde{g})\underline{{\mathcal {L}}} (Z^I \widetilde{g})+e_\theta (Z^I \widetilde{g})^2)\\&\quad =\frac{1}{2}g_{T \underline{{\mathcal {L}}}}{\mathcal {L}}(Z^I \widetilde{g}){\mathcal {L}}(Z^I \widetilde{g})-\frac{1}{2}g_{T{\mathcal {L}}}e_\theta (Z^I \phi )^2+g_{Te_\theta }{\mathcal {L}}(Z^I \widetilde{g})e_\theta (Z^I \widetilde{g})\\&\quad \ge (1-C\varepsilon )({\mathcal {L}}(Z^I \widetilde{g})^2+e_\theta (Z^I \widetilde{g})^2)\ge 0. \end{aligned}$$

Since in all our proof, the bootstrap condition (3.25) was not needed in the exterior region, we easily see from Sect. 9.1 that we will be able to improve (A.1).

To improve (A.2) we perform the energy estimate in the flat metric. \(\widetilde{Q}\) is now the flat energy-momentum tensor. We now have to be careful with

$$\begin{aligned} \widetilde{Q}_{T{\mathcal {L}}}=&\partial _t Z^I \widetilde{g} {\mathcal {L}}(Z^I \widetilde{g})-\frac{1}{2}m_{T{\mathcal {L}}}\left( \partial _s(Z^I \widetilde{g})\partial _q (Z^I \widetilde{g})+\frac{1}{r^2}(\partial _\theta Z^I \widetilde{g})^2\right) , \end{aligned}$$

which may not be positive. Since \({\mathcal {L}}= (1+O(g-m))\partial _s + O(g_{L L})\partial _q + O(g_{UL})\partial _U,\) we have

$$\begin{aligned} \widetilde{Q}_{T{\mathcal {L}}}&=(1+O(\varepsilon ))\left( (\partial _s Z^I \widetilde{g})^2+\frac{1}{r^2}(\partial _\theta Z^I \widetilde{g})^2\right) +O(g_{ L L})(\partial _q Z^I \widetilde{g})^2\\&\ge (1-\varepsilon )\left( (\partial _s Z^I \widetilde{g})^2+\frac{1}{r^2}(\partial _\theta Z^I \widetilde{g})^2\right) -\frac{\varepsilon ^3}{(1+s)^{\frac{5}{2}-3\rho }} \end{aligned}$$

where we have used (A.3). Consequently the energy estimate yields

$$\begin{aligned}&\int _{\Sigma _t} w(\partial Z^I \widetilde{g})^2+ \int _{\partial {\bar{C}}} w({{\bar{\partial }}} Z^I \widetilde{g})^2 +C\int _0^t \int w'(q) ({\bar{\partial }} \widetilde{g})^2\\&\quad \lesssim \int _0^t \int |\partial _t Z^I \widetilde{g}||\Box _g Z^I \widetilde{g}|+ \int _{0}^t \frac{\varepsilon ^3}{(1+\tau )^{\frac{3}{2}-3\rho }} d\tau . \end{aligned}$$

We then easily see from Sect. 10.3 that we can improve the bootstrap assumption (we can check that the cubic non linearities without null structure in \(Q_{\underline{L} \underline{L}}\) are not present).

B Regularity of the Initial Data

To obtain solutions of the constraint equation with an asymptotic behaviour \(g=g_{{\mathfrak {b}}}+\widetilde{g}\), we take the exterior solution constructed in the previous section (we denote by \(s',q',\theta '\) the coordinates used for this construction), make the change of variable

$$\begin{aligned} s'= & {} (1-\chi (r))s+\chi (r)\left( (1+b(\theta ,s))s-(\partial _\theta b(\theta ,s))^2(1+b(\theta ,s))^{-1}q\right) , \\ q'= & {} (1-\chi (r))q+\chi (r)(1+b(\theta ,s))^{-1}q, \\ \theta '= & {} (1-\chi (r))\theta + \chi (r)\left( \theta - \frac{q}{r}\frac{\partial _\theta b(\theta ,s)}{(1+b(\theta ,s))^2}+ f(\theta ,s)\right) , \end{aligned}$$

and consider the space-like hypersurface, given by \(t=0\). We denote by \(\Sigma _b\) this hypersurface, and consider \({\bar{g}}=g|_{\Sigma _b}\), and K the second fundamental form of the embedding \(\Sigma _b \subset M\). \(({\bar{g}},K)\) is a solution to the constraint equations.

Proposition B.1

There exists

$$\begin{aligned} (g_{\alpha \beta })_0,(g_{\alpha \beta })_1 \in H^{N+1}_{\delta }\times H^{N}_{\delta +1} \end{aligned}$$

such that the initial data for g given by

$$\begin{aligned} g=g_{{\mathfrak {b}}}+g_0, \;\partial _t g = \partial _t g_{{\mathfrak {b}}} +g_1, \end{aligned}$$

are such that

  • \({\bar{g}}_{ij}=g_{ij}, K_{ij}={\mathcal {L}}_{\beta }g_{ij}\) satisfy the constraint equations (1.4) and (1.5).

  • the following generalized wave coordinates condition is satisfied at \(t=0\).

    $$\begin{aligned} g^{\lambda \beta }\Gamma ^\alpha _{\lambda \beta }=g_{{\mathfrak {b}}}^{\lambda \beta }(\Gamma _b)^\alpha _{\lambda \beta }+G^\alpha + \widetilde{G}^\alpha , \end{aligned}$$

where \(G^\alpha \) is defined by (2.25), (2.26) and (2.27) and \(\widetilde{G}\) is the sum of all the crossed term of the form \(g_0\frac{\partial _\theta }{r} g_{{\mathfrak {b}}}\) and \(g_0\partial _s g_{{\mathfrak {b}}}\) in \(g^{\lambda \beta }\Gamma ^\alpha _{\lambda \beta }-g_{{\mathfrak {b}}}^{\lambda \beta }(\Gamma _b)^\alpha _{\lambda \beta }\). Moreover we have the estimate

$$\begin{aligned} \Vert g_0\Vert _{H^{N+1}_{\delta }} +\Vert g_1\Vert _{H^N_{\delta +1}}\lesssim \varepsilon . \end{aligned}$$

Proof

There are two issues to consider for the regularity of \(({\bar{g}},K)\).

  • We have \(t'\sim t-b(\theta ,s)r\), so \(|t'|\rightarrow \infty \) as \(r\rightarrow \infty \) in \(\Sigma _b\). Consequently we have to be careful with the logarithmic growth in \(t'\) of the higher energy of \(\widetilde{g}\).

  • In \(\partial ^N_\theta \widetilde{g}\), we have terms of the form \(\partial _\theta ^{N+2}b(\theta ,s) \partial _\theta \widetilde{g}\): we have also to be careful with the logarithmic growth in s of \(\Vert \partial _\theta ^{N+2}b(\theta ,s) \Vert _{L^2(\mathbb {S}^1)}\).

We treat the first issue. We can estimate \(\int _{\Sigma _b} w(q)(\partial Z^N \widetilde{g})^2 rdrd\theta \) by performing the energy estimate on the domain delimited by \(\Sigma _0\) and \(\Sigma _b\). We denote by \(\Omega _b\) this domain. We have

$$\begin{aligned} \int _{\Sigma _b} w(q)(\partial Z^N \widetilde{g})^2\lesssim \int _{\Sigma _0}w(q)(\partial Z^N \widetilde{g})^2 + \int _{\Omega _b} \frac{\varepsilon }{1+s}w(q)(\partial Z^N \widetilde{g})^2. \end{aligned}$$

We note that in the region \(\Omega _b\cap \{q>R\}\) we have \(|q|>Ct\). Since \(w(q)\le v(q)(1+|q|)^{\delta -\delta '}\) we have

$$\begin{aligned} \int _{\Sigma _b} w(q)(\partial Z^N \widetilde{g})^2&\lesssim \int _{\Sigma _0}w(q)(\partial Z^N \widetilde{g})^2 + \int _{\Omega _b} \frac{\varepsilon }{(1+t)^{1+\delta -\delta '}}v(q)(\partial Z^N \widetilde{g})^2\\&\lesssim \int _{\Sigma _0}w(q)(\partial Z^N \widetilde{g})^2 +\varepsilon ^3. \end{aligned}$$

We treat the second issue with the help of the weight w:

$$\begin{aligned} \int w(r)(\partial ^{N+2}b(\theta ,s) \partial \partial _\theta \widetilde{g})^2&\lesssim \int \frac{\varepsilon }{(1+r)^{1+\delta -\delta '}}\Vert \partial _\theta ^{N+2}b(\theta ,r) \Vert ^2_{L^2(\mathbb {S}^1)}\\&\lesssim \int \frac{\varepsilon ^3}{(1+r)^{1+\delta -\delta '-2\rho }}\\&\lesssim \varepsilon ^3 \int w(r)(\partial ^{N+2}\partial _s b(\theta ,s)\partial _\theta \widetilde{g})^2\\&\lesssim \int \frac{\varepsilon }{(1+r)^{\delta -\delta '}}\Vert \partial _s \partial _\theta ^{N+2}b(\theta ,r) \Vert ^2_{L^2(\mathbb {S}^1)}dr\\&\lesssim \varepsilon ^3. \end{aligned}$$

We now discuss the regularity of \(\partial _t g_{0i}\). The generalized wave coordinate condition can be written

$$\begin{aligned} g^{\lambda \beta }\Gamma ^\alpha _{\lambda \beta }=(g_{{\mathfrak {b}}})^{\lambda \beta }(\Gamma _b)^\alpha _{\lambda \beta }+G^\alpha + \widetilde{G}^\alpha , \end{aligned}$$

Therefore, if we write it for \(\alpha =i\) we obtain a relation for \(\partial _tg_{0i}\) and if we write it for \(\alpha =0\), we obtain a relation for \(\partial _t g_{00}\). However, if we write \(g=g_{{\mathfrak {b}}} +\widetilde{g}\), the term

$$\begin{aligned} g^{\lambda \beta }\Gamma ^\alpha _{\lambda \beta }-(g_{{\mathfrak {b}}})^{\lambda \beta }(\Gamma _b)^\alpha _{\lambda \beta } \end{aligned}$$

contains crossed terms of the form

$$\begin{aligned} \widetilde{g} \partial _U g_{{\mathfrak {b}}} \sim \widetilde{g} \frac{\partial ^3_\theta b(\theta )}{r}+s.t., \quad \widetilde{g} \partial _s g_{{\mathfrak {b}}} \sim \widetilde{g}\partial _s^2 \partial _\theta b+s.t. \end{aligned}$$

which do not belong in \(H^N_{\delta +1}\) because we are missing a derivative on b. However these terms are removed thanks to the addition of the term \(\widetilde{G}\) in the generalized wave coordinate condition. Consequently \(\partial _t \widetilde{g}_{00}\) and \(\partial _t \widetilde{g}_{0i}\) are given by a sum of terms the form

$$\begin{aligned} K, \;\nabla g_0,\;g_{{\mathfrak {b}}}K,\; g_{{\mathfrak {b}}} \nabla g_0, \; \frac{\chi (r)g_{{\mathfrak {b}}}}{r}g_0. \end{aligned}$$

With this choice, \(\partial _t \widetilde{g}_{0i}\) and \(\partial _t \widetilde{g}_{00}\) belong to \(H^N_{\delta +1}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huneau, C. Stability of Minkowski Space-Time with a Translation Space-Like Killing Field. Ann. PDE 4, 12 (2018). https://doi.org/10.1007/s40818-018-0048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-018-0048-x

Keywords

Navigation