Skip to main content
Log in

Robust Fuzzy Model-Based \(H_2/H_\infty\) Control for Markovian Jump Systems with Random Delays and Uncertain Transition Probabilities

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper studies the mixed \(H_2/H_\infty\) control for Takagi–Sugeno (T–S) fuzzy Markovian jump systems (MJSs) subject to random delays and multiple uncertain transition probabilities. In contrast to existing research, this study presents uncertainty parameters, external disturbance, random delays, and uncertain transition probabilities simultaneously in a unified T–S fuzzy model. Specifically, this study examines multiple Markov chains with partially unknown transition probabilities. These complex imperfections have a substantial adverse impact on system performance and the associated challenge of mixed \(H_2/H_\infty\) control remains unresolved. Our innovative contributions are described as follows. The proposed approach utilizes free-weighting matrix technique and Lyapunov–Krasovskii functional to get the \(H_2/H_\infty\) controller, which ensures that the stochastic T–S fuzzy systems exhibit stochastic stability and comply with the \(H_\infty\) performance index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Hou, T., Ma, H.: Exponential stability for discrete-time infinite Markov jump systems. IEEE Trans. Autom. Control 61(12), 4241–4246 (2016)

    Article  MathSciNet  Google Scholar 

  2. Lin, H., Su, H., Shu, Z., et al.: Optimal estimation in udp-like networked control systems with intermittent inputs: stability analysis and suboptimal filter design. IEEE Trans. Autom. Control 61(7), 1794–1809 (2016)

    Article  MathSciNet  Google Scholar 

  3. Tan, C., Gao, C., Zhang, Z., et al.: Non-fragile guaranteed cost control for networked nonlinear Markov jump systems under multiple cyber-attacks. J. Franklin Inst. 360(13), 9446–9467 (2023)

    Article  MathSciNet  Google Scholar 

  4. Yang, H., Xu, Y., Zhang, J.: Event-driven control for networked control systems with quantization and Markov packet losses. IEEE Trans. Cybern. 47(8), 2235–2243 (2017)

    Article  Google Scholar 

  5. Grillo, S., Pievatolo, A., Tironi, E.: Optimal storage scheduling using Markov decision processes. IEEE Trans. Sustain. Energy 7(2), 755–764 (2016)

    Article  Google Scholar 

  6. Li, F., Xu, S., Shen, H.: Fuzzy-model-based \(H_\infty\) control for Markov jump nonlinear slow sampling singularly perturbed systems with partial information. IEEE Trans. Fuzzy Syst. 27(10), 1952–1962 (2019)

    Article  Google Scholar 

  7. Shen, H., Li, F., Yan, H., et al.: Finite-time event-triggered \(H_\infty\) control for T–S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Article  Google Scholar 

  8. Fang, H., Tu, Y., Wang, H.: Fuzzy-based adaptive optimization of unknown discrete-time nonlinear Markov jump systems with off-policy reinforcement learning. IEEE Trans. Fuzzy Syst. 30(12), 5276–5290 (2022)

    Article  Google Scholar 

  9. Aslam, M.S., Qaisar, I., Majid, Abdul., et al.: Adaptive event-triggered robust \(H_\infty\) control for T–S fuzzy networked Markov jump systems with time-varying delay. Asian J. Control 25(1), 213–228 (2022)

  10. Wu, Z., Dong, S., Shi, P., et al.: Fuzzy-model-based nonfragile guaranteed cost control of nonlinear Markov jump systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2388–2397 (2017)

    Article  Google Scholar 

  11. Zhang, L., Ning, Z., Shi, P.: Input-output approach to control for fuzzy Markov jump systems with time-varying delays and uncertain packet dropout probability. IEEE Trans. Cybern. 45(11), 2449–2460 (2015)

    Article  Google Scholar 

  12. Zhang, X., Wang H., Stojanovic, V.: Asynchronous fault detection for interval type-2 fuzzy nonhomogeneous higher level Markov jump systems with uncertain transition probabilities. IEEE Trans. Fuzzy Syst. 30(7), 2487–2499 (2022)

  13. Lian, J., Li, S.: Fuzzy control of uncertain positive Markov jump fuzzy systems with input constraint. IEEE Trans. Cybern. 51(4), 2032–2041 (2021)

    Article  Google Scholar 

  14. He, M., Li, J.: Resilient guaranteed cost control for uncertain T–S fuzzy systems with time-varying delays and Markov jump parameters. ISA Trans. 88, 12–22 (2019)

    Article  Google Scholar 

  15. Sun, J., Zhang, H., Wang, Y., Liang, H.: \(H_\infty\) control for switched it2 fuzzy nonlinear systems with multiple time delays applied in hybrid grid-connected generation. Appl Math. Comput. 395, 125887 (2021)

    MathSciNet  Google Scholar 

  16. Liang, H., Chang, Z., Ahn, C.K.: Hybrid event-triggered intermittent control for nonlinear multi-agent systems. IEEE Trans. Netw. Sci. Eng. 10(4), 1975–1984 (2023)

    Article  MathSciNet  Google Scholar 

  17. Aatabe, M., El Guezar, F., Bouzahir, H.: Constrained stochastic control of positive T–S fuzzy systems with Markov jumps and its application to a DC–DC boost converter. Trans. Inst. Meas. Control 42(16), 3234–3242 (2020)

    Article  Google Scholar 

  18. Qi, Q., Xie, L., Zhang, H.: Optimal control for stochastic systems with multiple controllers of different information structures. IEEE Trans. Autom. Control 66(9), 4160–4175 (2021)

    Article  MathSciNet  Google Scholar 

  19. Huang, H., Li, D., Xi, Y.: Design and input-to-state practically stable analysis of the mixed \(H_2/H_\infty\) feedback robust model predictive control. IET Control Theory Appl. 6(4), 498–505 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wang, M., Liang, H., Pan, Y., et al.: A new privacy preservation mechanism and a gain iterative disturbance observer for multiagent systems. IEEE Trans. Netw. Sci. Eng. 11(1), 392–403 (2023)

  21. Chen, L., Liang, H., Pan, Y., et al.: Human-in-the-loop consensus tracking control for UAV systems via an improved prescribed performance approach. IEEE Trans. Aerosp. Elect. Syst. 59(6), 8380–8391 (2023)

  22. Xue, A., Wang, H., Lu, R.: Event-based \(H_\infty\) control for discrete Markov jump systems. Neurocomputing 190, 165–171 (2016)

    Article  Google Scholar 

  23. Xing, M., Deng, F., Li, S., et al.: Stability of nonlinear stochastic Markov jump system with mode-dependent delays and applications. Int. J. Comput. Math. 98(8), 1683–1698 (2020)

    Article  MathSciNet  Google Scholar 

  24. Yang, S., Bo, Y.: Robust mixed \(H_2/H_\infty\) control of networked control systems with random delays in both backward communication links. Automatica 7(4), 754–760 (2011)

    Google Scholar 

  25. Qiu, L., Shi, Y., Yao, F., et al.: Network-based robust \(H_2/H_\infty\) control for linear systems with two-channel random packet dropouts and time delays. IEEE Trans. Cybern. 45(8), 1450–1462 (2015)

    Article  Google Scholar 

  26. Petersen, I.R.: A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 8(4), 351–357 (1987)

    Article  MathSciNet  Google Scholar 

  27. Qiu, L., Yao, F., Xu, G., et al.: Output feedback guaranteed cost control for networked control systems with random packet dropouts and time delays in forward and feedback communication links. IEEE Trans. Autom. Sci. Eng. 13(1), 284–295 (2016)

    Article  Google Scholar 

  28. Sun, H., Yan, L.: Robust \(H_\infty\) fuzzy control for nonlinear discrete-time stochastic systems with Markovian jump and parametric uncertainties. Math. Probl. Eng. 2014, 11 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Wu, J., Cao, J., et al.: \({H}_{\infty }\) Fuzzy dynamic output feedback reliable control for Markov jump nonlinear systems with pdt switched transition probabilities and its application. IEEE Trans. Fuzzy Syst. 30(8), 3113–3124 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendices

Appendix 1

Proof

First, define

$$\begin{aligned} P_{im}&=\sum _{s=1}^rh_s(\mu _{k})P_{s,im},\,\,P_{jn}=\sum _{f=1}^rh_f(\mu _{k})P_{f,jn},\\ R_1&=\sum _{s=1}^rh_s(\mu _{k})R_{1s}, \quad R_2=\sum _{s=1}^rh_s(\mu _{k})R_{2s},\\ {\bar{R}}_1&=\sum _{s=1}^rh_s(\mu _{k}){\bar{R}}_{1s}=\sum _{s=1}^rh_s(\mu _{k})(1-{\underline{\pi }}_m)R_{1s},\\ {\bar{P}}_{im}&=\sum _{j=1}^M\sum _{n=0}^N{\hat{\delta }}_{ij}{\hat{\pi }}_{mn}P_{jn}\\&=\sum _{f=1}^r\sum _{j=1}^M\sum _{n=0}^N h_f(\mu _{k}){\hat{\delta }}_{ij}{\hat{\pi }}_{mn}P_{f,jn}\\&=\sum _{f=1}^rh_f(\mu _{k}){\bar{P}}_{f,im}.\end{aligned}$$

Starting from (16) and (17) together with (9) and (11), we can utilize the Schur complement to obtain the following relation

$$\begin{aligned}&\Theta _{im}=\sum _{s=1}^r\sum _{l=1}^r\sum _{f=1}^rh_sh_lh_f(\mu _{k})\Theta _{fsl,im} \\&\quad =\sum _{f=1}^rh_f(\mu _{k})\Bigg (\sum _{s=1}^rh_s^2(\mu _{k})\Theta _{ss,im}+\sum _{s=1}^{r-1}\sum _{l=s+1}^rh_sh_l(\mu _{k}) \\&\qquad \times (\Theta _{sl,im}+\Theta _{ls,im})\Bigg ) <0, \end{aligned}$$
(42)

where

$$\begin{aligned} \Theta _{im}&=\text {sym}\{\bar{\mathbb {G}}^T\mathbb {A}_{i,m}\}+\begin{bmatrix} \tilde{\Upsilon }_{11}&{}{\bar{P}}_{im}&{}R_2&{}0\\ *&{}\tilde{\Upsilon }_{22}&{}0&{}0\\ *&{}*&{}\tilde{\Upsilon }_{33}&{}R_2\\ *&{}*&{}*&{}\tilde{\Upsilon }_{44} \end{bmatrix},\\ \mathbb {A}_{im}&=\begin{bmatrix}{\bar{A}}_{ci}-I&-I&{\bar{A}}_{di}&0\end{bmatrix},\\ \tilde{\Upsilon }_{11}&=-P_{im}+{\bar{P}}_{im}+R_1+(1+{\bar{d}}-{\underline{d}}){\bar{R}}_1-R_2,\\ \tilde{\Upsilon }_{22}&={\bar{P}}_{im}+{\bar{d}}^2R_2,\quad \tilde{\Upsilon }_{33}=-R_1-2R_2,\\ \tilde{\Upsilon }_{44}&={\bar{R}}_1-R_2.\end{aligned}$$

Then, we adopt the following novel Lyapunov–Krasovskii functions with

$$\begin{aligned} V(x_{k})=\sum _{q=1}^4 V_q(x_{k}), \end{aligned}$$

where \(\forall y_k=i\in {\mathbb{M}}\) and \(\forall d_k=m\in \mathbb {N}\)

$$\begin{aligned} V_1(x_{k})&=x_{k}^TP_{im}x_{k},\\ V_2(x_{k})&=\sum _{\tau =k-d_k}^{k-1}x_{\tau }^TR_1x_{\tau },\\ V_3(x_{k})&=\sum _{\theta =-{\bar{d}}+1}^{-{\underline{d}}+1}\sum _{\tau =k+\theta -1}^{k-1}x_{\tau }^T{\bar{R}}_1 x_{\tau },\\ V_4(x_{k})&=\sum _{\theta =-{\bar{d}}+1}^0\sum _{\tau =k+\theta -1}^{k-1}{\bar{d}}\rho _{\tau }^TR_{2}\rho _{\tau },\\ \rho _{\tau }&=x_{\tau +1}-x_{\tau }.\end{aligned}$$

Given \(y_k=i,y_{k+1}=j,d_k=m\) and \(d_{k+1}=n\), we denote \(\textbf{E}[\Delta V_k]\) the expectation of the difference of every term in \(V_{q}(x_{k})\) for \(q=1,2,\ldots ,4\).

To be specific, define

$$\begin{aligned} \xi _{k} = \begin{bmatrix} x_{k}^T&\rho _{k}^T&x_{k-d_k}^T&x_{k -{\bar{d}}}^T\end{bmatrix}^T. \end{aligned}$$
(43)

For any \(\bar{\mathbb {G}}\) associated with the system (11), \(\text {let}\, \bar{\mathbb {G}}=.\) \(\left. \begin{bmatrix}G_1&G_2&G_3&0\end{bmatrix}\right)\), we can derive

$$\begin{aligned} 2\xi _{k}^T \bar{\mathbb {G}}^T (({\bar{A}}_{ci}-I )x_{k}+{\bar{A}}_{di}x_{k-d_k}-\rho _{k})=0 \end{aligned}$$
(44)

when \(v_{k}=0\). Then, we obtain

$$\begin{aligned}&\textbf{E}[\Delta V_1] \\&\quad = \textbf{E}\{(x_{k}+\rho _{k})^T{\bar{P}}_{im}(x_{k}+\rho _{k})\}- \textbf{E}\{x_{k}^TP_{im}x_{k}\} \\&\qquad +2\xi _{k}^T\bar{\mathbb {G}}^T(({\bar{A}}_{ci}-I)x_{k}+{\bar{A}}_{di}x_{k-d_k}-\rho _{k}).\end{aligned}$$
(45)

Combining (6), we obtain

$$\begin{aligned}&\textbf{E}[\Delta V_2] \\&\quad =\pi _{mm}\left( \sum _{\tau =k+1-m}^k-\sum _{\tau =k-m}^{k-1}\right) x_{\tau }^TR_1x_{\tau } \\&\qquad +\sum _{n=0,n\ne m}^N\pi _{mn}\left( \sum _{\tau =k+1-n}^k-\sum _{\tau =k-d_k}^{k-1}\right) x_{\tau }^TR_1x_{\tau } \\&\quad =x_{k}^TR_1x_{k}-x_{k-d_k}^TR_1x_{k-d_k}+\sum _{n=0,n\ne m}^N\pi _{mn} \\&\qquad \times \left( \sum _{\tau =k-{\underline{d}}+1}^{k-1}+\sum _{\tau =k+1-n}^{k-d}-\sum _{l=k-d_k+1}^{k-1}\right) x_{\tau }^TR_1x_{\tau }.\end{aligned}$$
(46)

In fact, we have

$$\begin{aligned} \sum _{\tau =k-{\underline{d}}+1}^{k-1}x_{\tau }^TR_1x_{\tau }&\le \sum _{\tau =k-d_k+1}^{k-1}x_{\tau }^TR_1x_{\tau }. \end{aligned}$$
(47)
$$\begin{aligned} \sum _{\tau =k+1-n}^{k-{\underline{d}}}x_{\tau }^TR_1x_{\tau }&\le \sum _{\tau =k+1-{\bar{d}}}^{k-{\underline{d}}}x_{\tau }^TR_1x_\tau.\end{aligned}$$
(48)

Taking (46)–(48) into account, we obtain that

$$\begin{aligned} \textbf{E}[\Delta V_2]&\le x_{k}^TR_1x_{k}-x_{k-d_k}^TR_1x_{k-d_k} \\&\quad -x_{k -{\bar{d}}}^T{\bar{R}}_1x_{k -{\bar{d}}}+\sum _{\tau =k-{\bar{d}}}^{k-{\underline{d}}}x_{\tau }^T{\bar{R}}_1x_{\tau }.\end{aligned}$$
(49)

Moreover,

$$\begin{aligned} \textbf{E}[\Delta V_3]&=\sum _{\theta =-{\bar{d}}+1}^{-{\underline{d}}+1}\left( \sum _{\tau =k+\theta }^k-\sum _{\tau =k+\theta -1}^{k-1}\right) x_{\tau }^T{\bar{R}}_1x_{\tau } \\&=({\bar{d}}-{\underline{d}}+1)x_{\tau }{\bar{R}}_1x_{\tau }-\sum _{\tau =k-{\bar{d}}}^{k-{\underline{d}}}x_{\tau }^T{\bar{R}}_1x_{\tau }, \end{aligned}$$
(50)
$$\begin{aligned} \textbf{E}[\Delta V_4]&=\sum _{\theta =-{\bar{d}}+1}^0\left( \sum _{\tau =k+\theta }^k-\sum _{\tau =k+\theta -1}^{k-1}\right) {\bar{d}}\rho _{\tau }^TR_2\rho _{\tau } \\&={\bar{d}}^2\rho _{k}^TR_2\rho _{k}-\sum _{\tau =k-{\bar{d}}}^{k-1}{\bar{d}}\rho _{\tau }^TR_2\rho _{\tau }.\end{aligned}$$
(51)

By Jensen’s inequality, one has that

$$\begin{aligned}&-\sum _{\tau =k-{\bar{d}}}^{k-1}{\bar{d}}\rho _{\tau }^TR_2\rho _{\tau } \\&\quad =-\left( \sum _{\tau =k-d_k}^{k-1}+\sum _{\tau =k-{\bar{d}}}^{k-d_k-1}\right) (d_k+{\bar{d}}-d_k)\rho _{\tau }^TR_2\rho _{\tau } \\&\quad \le -\left( \sum _{\tau =k-d_k}^{k-1}\rho _{\tau }\right) ^TR_2\left( \sum _{\tau =k-d_k}^{k-1}\rho _{\tau }\right) \\&\qquad -\left( \sum _{\tau =k-{\bar{d}}}^{k-d_k-1}\rho _{\tau }\right) ^TR_2\left( \sum _{\tau =k-{\bar{d}}}^{k-d_k-1}\rho _{\tau }\right) \\&\quad =-(x_{k}-x_{k-d_k})^TR_2(x_{k}-x_{k-d_k}) \\&\qquad -\left( x_{k-d_k}-x_{k -{\bar{d}}}\right) ^TR_2\left( x_{k-d_k}-x_{k -{\bar{d}}}\right).\end{aligned}$$
(52)

Substituting (52) into (51) and combining (45), (49), and (50), we can infer that

$$\begin{aligned} \textbf{E}[\Delta V]\le \xi _{k}^T\Theta _{im}\xi _{k}.\end{aligned}$$
(53)

According to \(\Theta _{im}<0\), we obtain

$$\begin{aligned} \textbf{E}[\Delta V]\le -\mathbb {\delta }_{\min }(-\Theta _{im})\xi _{k}^T\xi _{k}\le -\beta x_{k}^Tx_k, \end{aligned}$$
(54)

where \(\beta =inf\{\mathbb {\delta }_{\min }(-\Theta _{im},i\in {\mathbb{M}},m\in \mathbb {N})\}\). Then, for each \(T\ge 1\), one has

$$\begin{aligned} \textbf{E}[V_{k+1}(x_{k+1})-V_{0}(x_0)]\le -\beta \sum _{k=0}^T \textbf{E}[x_{k}^Tx_k].\end{aligned}$$
(55)

Moreover,

$$\begin{aligned} \sum _{k=0}^T \textbf{E}[x_{k}^Tx_k]&\le \frac{1}{\beta } \textbf{E}[V_{0}(x_0)-V_T(x_T)] \\&\le \frac{1}{\beta }{} \textbf{E}[V_{0}(x_0)], \quad T>1, \end{aligned}$$
(56)

which indicates that

$$\begin{aligned} \sum _{k=0}^\infty \textbf{E}[x_{k}^Tx_k]\le \frac{1}{\beta }{} \textbf{E}[V_{0}(x_0)]<\infty.\end{aligned}$$

The Definition 1 leads to the conclusion that this situation indicates that (11) is stochastically stable.

Furthermore, one obtains that

$$\begin{aligned} \textbf{E}&[\Delta V]+ \textbf{E}[z_{k}^Tz_k] \\&\le \xi _{k}^T\left\{ \Theta _{im}+\begin{bmatrix}{\bar{C}}_i&0&0&0\end{bmatrix}^T\begin{bmatrix}{\bar{C}}_i&0&0&0\end{bmatrix}\right\} \xi _{k} \\&=\xi _{k}^T\Gamma _{im}\xi _{k}, \end{aligned}$$
(57)

where

$$\begin{aligned} \Gamma _{im}&=\begin{bmatrix}-I&{}\Xi \\ *&{}\Theta _{im}\end{bmatrix},\quad \Xi =\begin{bmatrix}{\bar{C}}_i&0&0&0\end{bmatrix}.\end{aligned}$$

Based on the Schur complement, \(\Gamma _{im}<0\) is derived from (16) and

$$\begin{aligned} \textbf{E}[\Delta V]+ \textbf{E}[z_{k}^Tz_k]<0, \end{aligned}$$
(58)

which yields that

$$\begin{aligned} \sum _{k=0}^\infty \textbf{E}[z_k^Tz_k]<-\sum _{k=0}^\infty \textbf{E}[\Delta V], .\end{aligned}$$

Then, in accordance with (54)–(56), we get

$$\begin{aligned} -\sum _{k=0}^\infty \textbf{E}[\Delta V]&\le \beta \sum _{k=0}^\infty \textbf{E}[x_k^Tx_k]\\&\le \textbf{E}[V_0(x_0)] \le V (x_0,y_0,d_0).\end{aligned}$$

Thus, when \(k\rightarrow \infty\), it follows that \(V_{k}(x_{k})\rightarrow \infty\). Similarly, one has that

$$\begin{aligned} J_2=\sum _{k=0}^{\infty } \textbf{E}[z_{k}^Tz_k\vert \psi _0,y_0,d_0]\le V(x_0,y_0,d_0).\end{aligned}$$
(59)

Therefore, (18) is obtained straightforwardly from (59). \(\square\)

Appendix 2

Proof

Define \(\mathcal {A}=diag\{I,X,\omega _1X,\omega _2X,X\}\), \(G_1^{-1}=X\), \(G_2^{-1}=\omega _1X\), and \(G_3^{-1}=\omega _2X\), where the tuning parameters \(\omega _1>0\) and \(\omega _2>0\) are known a priori. We also provide the following notations

$$\begin{aligned} {\hat{P}}_{im}&=X^TP_{im}X,\,\hat{{\bar{P}}}_{im}=X^T{\hat{P}}_{im}X,\,{\hat{R}}_2=X^T R_2X,\\ {\hat{R}}_1&=X^TR_1X,\, K_{im}X=Y_{im}.\end{aligned}$$

By pre- and post-multiplying \(\mathcal {A}^T\) and \(\mathcal {A}\) in (16), we have

$$\begin{aligned} \begin{bmatrix}-I&{}{\tilde{\Xi }}_{ss}\\ *&{} {\tilde{\Theta }}_{fss,im}\end{bmatrix}<0, \end{aligned}$$
(60)

where

$$\begin{aligned} {\tilde{\Theta }}_{fss,im}&\\ =\text {sym}&\left[ {\begin{array}{*{20}{c}} ( A_{s,i}+\Delta A_{ss}-I)X-( B_{s,i}+\Delta B_{ss})Y_{im}\\ ( A_{s,i}+\Delta A_{ss}-I)X-( B_{s,i}+\Delta B_{ss})Y_{im}\\ ( A_{s,i}+\Delta A_{ss}-I)X-( B_{s,i}+\Delta B_{ss})Y_{im}\\ 0 \end{array}}\right. \\&\left. { \begin{array}{*{20}{c}} &{}-\omega _1X&{}\omega _2( A_{ds,i}+\Delta A_{ds,i})X&{}0\\ &{}-\omega _1X&{}\omega _2( A_{ds,i}+\Delta A_{ds,i})X&{}0\\ &{}-\omega _1X&{}\omega _2( A_{ds,i}+\Delta A_{ds,i})X&{}0\\ &{}0&{}0&{}0\\ \end{array} } \right] \\&\quad +\begin{bmatrix} {\bar{\Upsilon }}_{11}&{}\omega _1\hat{\bar{P}}_{im}&{}\omega _2 {\bar{R}}_2&{}0\\ *&{}{\bar{\Upsilon }}_{22}&{}0&{}0\\ *&{}*&{}{\bar{\Upsilon }}_{33}&{}{\hat{R}}_2\\ *&{}*&{}*&{}{\bar{\Upsilon }}_{44} \end{bmatrix},\\ \Delta A_{ss}&=H_{s,i}F_{sk}E_{1s,i},\, \Delta B_{ss}=H_{s,i}F_{sk}E_{3s,i},\\ {\bar{\Upsilon }}_{11}&=-{\hat{P}}_{s,im}+\hat{{\bar{P}}}_{f,im}+{\hat{R}}_{1s}\\&\quad +({\bar{d}}-{\underline{d}}+1)(1-{\underline{\pi }}_m){\hat{R}}_{1s} -{\hat{R}}_{2s},\\ {\bar{\Upsilon }}_{22}&=\omega _1^2\hat{{\bar{P}}}_{f,im}+\omega _1^2{\bar{d}}^2{\hat{R}}_{2s},\\ {\bar{\Upsilon }}_{33}&=-\omega _2^2{\hat{R}}_{1s}-2\omega _2^2{\hat{R}}_{2s},\\ {\bar{\Upsilon }}_{44}&=-(1-\pi _m){\hat{R}}_{1s}-{\hat{R}}_{2s},\\ \hat{{\bar{P}}}_{f,im}&=\sum _{j=1}^M\sum _{n=0}^N{\hat{\delta }}_{ij}\pi _{mn}{\hat{P}}_{f,jn}.\end{aligned}$$

By applying (3) and (5), the above equation becomes

$$\begin{aligned} \bar{{\hat{P}}}_{f,im}&=\sum _{j=1}^M\sum _{n=0}^N{\hat{\delta }}_{ij}{\hat{\pi }}_{mn}{\hat{P}}_{f,jn} \\&=\sum _{j=1}^M\sum _{n=0}^N(\delta _{ij}\pi _{mn}+\delta _{ij}\Delta \pi _{mn} \\&\quad +\Delta \delta _{ij}\pi _{mn}+\Delta \delta _{ij}\Delta \pi _{mn}){\hat{P}}_{f,jn}.\end{aligned}$$
(61)

Under \(\vert \Delta \pi _{mm}\vert \le {\bar{\varepsilon }}_1\), it follows from (7) that

$$\begin{aligned} \sum _{j=1}^M&\sum _{n=0}^N\delta _{ij}\Delta \pi _{mn}{\hat{P}}_{f,jn} \\&=\sum _{j=1}^M\delta _{ij}\sum _{n=0,n\ne m}^N \Delta \pi _{mn}({\hat{P}}_{f,jn}-{\hat{P}}_{f,jm}) \\&\le \sum _{j=1}^M\delta _{ij}\Bigg (\frac{1}{4}{\bar{\varepsilon }}_1^2U_1+({\hat{P}}_{f,jm}-{\hat{P}}_{f,j,n\ne m})^TU_1^{-1} \\&\quad \times ({\hat{P}}_{f,jm}-{\hat{P}}_{f,j,n\ne m})\Bigg ).\end{aligned}$$
(62)

Similarly, it generates that

$$\begin{aligned}&\sum _{j=1}^M\sum _{n=0}^N\Delta \delta _{ij}\pi _{mn}{\hat{P}}_{f,jn} \\&\quad \le \sum _{n=0}^N\pi _{mn}\Bigg (\frac{1}{4}{\bar{\varepsilon }}_2^2U_2+({\hat{P}}_{f,in}-{\hat{P}}_{f,j\ne i,n})^T \\&\times U_2^{-1}({\hat{P}}_{f,in}-{\hat{P}}_{f,j\ne i,n})\Bigg ), \end{aligned}$$
(63)

and

$$\begin{aligned}&\sum _{j=1}^M\sum _{n=0}^N\Delta \delta _{ij}\Delta \pi _{mn}{\hat{P}}_{f,jn} \\&\le \sum _{j=0}^M\sum _{n=0}^N\left( \frac{1}{4}{\bar{\varepsilon }}_{ij}^2{\bar{\varepsilon }}_{mn}^2U_3+{\hat{P}}_{f,jn}^TU_3^{-1}{\hat{P}}_{f,jn}\right).\end{aligned}$$
(64)

Using the Schur complement and Lemma 1, together with (61)–(64) and (17), we can easily derive (28) and (29), respectively, from (16). \(\square\)

Appendix 3

Proof

We generate the same Lyapunov–Krasovskii functions for the system (11) as shown in Appendix 1. From (35) and (36), we can get

$$\begin{aligned} \Phi _{im}&=\sum _{s=1}^r\sum _{l=1}^rh_sh_l(\mu _k)\Phi _{sl,im} \\&=\sum _{s=1}^rh_s^2(\mu _k)\Phi _{ss,im} \\&\quad +\sum _{s=1}^{r-1}\sum _{l=s+1}^{r}h_sh_l(\mu _k)(\Phi _{sl,im}+\Phi _{ls,im}).\end{aligned}$$
(65)

For any nonzero \(v_{k}\in L_2[0,\infty )\), define \(\zeta _{k}=\begin{bmatrix}\xi _{k}^T&v_{k}^T\end{bmatrix}\). Then,

$$\begin{aligned}&\textbf{E}[\Delta V]+ \textbf{E}[\gamma ^{-1}z_{k}^Tz_k-\gamma v_{k}^Tv_k] \\&\le \zeta _{k}^T\left\{ \text {sym}\Big \{\begin{bmatrix}G_1&G_2&G_3&0&0\end{bmatrix}^T\right. \begin{bmatrix}{\bar{A}}_{ci}-I&-I&{\bar{A}}_{di}&0&{\bar{B}}_v\end{bmatrix}\Big \} \\&\quad +\begin{bmatrix}{\tilde{\Upsilon }}_{11}&{}{\bar{P}}_{im}&{}R_2&{}0&{}0\\ *&{}{\tilde{\Upsilon }}_{22}&{}0&{}0&{}0\\ *&{}*&{}{\tilde{\Upsilon }}_{33}&{}R_2&{}0\\ *&{}*&{}*&{}{\tilde{\Upsilon }}_{44}&{}0\\ *&{}*&{}*&{}*&{}-\gamma I \end{bmatrix} \\&\quad \left. +\begin{bmatrix} {\bar{C}}_{i}&0&0&0&0 \end{bmatrix}^T\gamma ^{-1}\begin{bmatrix} {\bar{C}}_{i}&0&0&0&0 \end{bmatrix} \right\} \zeta _{k} \\&=\zeta _{k}^T\Phi _{im}\zeta _{k}, \end{aligned}$$
(66)

and

$$\begin{aligned} J_T&= \textbf{E}\sum _{k=0}^{T-1}[\gamma ^{-1}z_{k}^Tz_k-\gamma v_{k}^Tv_k].\end{aligned}$$
(67)

For \(x_0=0,k=-{\bar{d}},\ldots ,-1\), it follows that \(V_{0}(x_0)=V(\psi _0,y_0,d_0)\) and

$$\begin{aligned} \textbf{E}[V_T(x_T)]= \textbf{E}\left[ \sum _{k=0}^{T-1}(V_{k+1}(x_{k+1})-V_{k}(x_{k})\right] >0.\end{aligned}$$
(68)

Accordingly, it implies that

$$\begin{aligned} J_T&\le \textbf{E}\left[ \sum _{k=0}^{T-1}(V_{k+1}(x_{k+1})-V_{k}(x_{k})\right. \\&\quad \left. +\gamma ^{-1}z_{k}^Tz_k-\gamma v_{k}^Tv_k)\right] \\&=\sum _{k=0}^{T-1}\left[ \zeta _{k}^T\Phi _{im}\zeta _{k} \right].\end{aligned}$$
(69)

Given that (35)and (36) guarantees \(\Phi _{im}<0\), it concludes

$$\begin{aligned} \lim _{T\rightarrow \infty }\sum _{k=0}^{T-1}[\zeta _{k}^T\Phi _{im}\zeta _{k}]<0.\end{aligned}$$
(70)

For each \(v_{k}\in L_2[0,\infty ),z_{k}\in L_2[0,\infty )\), it yields that

$$\begin{aligned} \parallel z_{k}\parallel _2\le \gamma ^2\parallel v_{k}\parallel _2.\end{aligned}$$
(71)

According to Definition 2, the system (11) reaches the given \(\gamma >0\) and is stochastically stable. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Zhu, B., Di, J. et al. Robust Fuzzy Model-Based \(H_2/H_\infty\) Control for Markovian Jump Systems with Random Delays and Uncertain Transition Probabilities. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-024-01680-9

Keywords

Navigation