Skip to main content
Log in

A Probabilistic Uncertain Linguistic Decision-Making Model for Resilient Supplier Selection Based on Extended TOPSIS and BWM

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Resilience is the sustainable competitive advantage of suppliers in the supply chain, and the ability of resilient suppliers to manage risk and perform better in supply than traditional suppliers in the event of disruption has driven the complexity of the current supply chain. Therefore, studying how to select a resilient supplier is necessary for establishing a supply chain with flexibility in the case of interruption. A hybrid fuzzy Multi-Criteria Group Decision-Making (MCGDM) framework is developed in this paper for Resilient Supplier Selection Problems (RSSPs). First, Probabilistic Uncertain Linguistic Term Sets (PULTSs) are introduced to deal with the subjectivity and uncertainty of experts’ assessments. Second, considering that experts may have different views on the relative importance of resilient criteria depending on their different knowledge backgrounds, the Probabilistic Uncertain Linguistic Best–Worst Method (PUL-BWM) is constructed to determine the weights of resilient criteria under different experts. In addition, given that the traditional Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) cannot handle the information metrics with negative values or reflect the correlation of information, the extended TOPSIS method based on a novel Probabilistic Uncertain Linguistic Synthetic Correlation Coefficient (PULSCC) is constructed to select the optimal resilient supplier. The novel PULSCC also overcomes the drawbacks of the existing correlation coefficient between PULTSs by considering the mean, variance, and information completeness of PULTSs. Finally, an example of resilient supplier selection in the automotive industry is performed to validate the applicability and feasibility of the proposed approach. The sensitivity and comparative analyses are conducted to demonstrate the effectiveness and superiority of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the article.

Abbreviations

BWM:

Best–Worst Method

DEMATEL:

Decision-Making Trial And Evaluation Laboratory

IT2FS:

Interval Type-2 Fuzzy Set

LT:

Linguistic Term

MCDM:

Multi-Criteria Decision-Making

MCGDM:

Multi-Criteria Group Decision-Making

PLTS:

Probabilistic Linguistic Term Set

PULAV:

Probabilistic Uncertain Linguistic Average Value

PULE:

Probabilistic Uncertain Linguistic Element

PULNIS:

Probabilistic Uncertain Linguistic Negative Ideal Solution

PULPIS:

Probabilistic Uncertain Linguistic Positive Ideal Solution

PULSCC:

Probabilistic Uncertain Linguistic Synthetic Correlation Coefficient

PULTS:

Probabilistic Uncertain Linguistic Term Set

PULWA:

Probabilistic Uncertain Linguistic Weighted Averaging

PULWSCC:

Probabilistic Uncertain Linguistic Weighted Synthetic Correlation Coefficient

RSSP:

Resilient Supplier Selection Problem

TODIM:

An Acronym in Portuguese of Interactive and Multi-Criteria Decision-Making

TOPSIS:

Technique for Order of Preference by Similarity to Ideal Solution

ULT:

Uncertain Linguistic Term

VIKOR:

VIse Kriterijumska Optimizacija kompromisno Resenja

References

  1. Piya, S., Shamsuzzoha, A., Khadem, M.: Analysis of supply chain resilience drivers in oil and gas industries during the COVID-19 pandemic using an integrated approach. Appl. Soft Comput. 121, 108756 (2022). https://doi.org/10.1016/j.asoc.2022.108756

    Article  Google Scholar 

  2. Gao, S.Y., Simchi-Levi, D., Teo, C.-P., Yan, Z.: Disruption risk mitigation in supply chains: the risk exposure index revisited. Oper. Res. 67, 831–852 (2019). https://doi.org/10.1287/opre.2018.1776

    Article  MathSciNet  Google Scholar 

  3. Parkouhi, S.V., Ghadikolaei, A.S., Lajimi, H.F.: Resilient supplier selection and segmentation in grey environment. J. Clean. Prod. 207, 1123–1137 (2019). https://doi.org/10.1016/j.jclepro.2018.10.007

    Article  Google Scholar 

  4. Dong, Y., Deng, X., Hu, X., Chen, W.: A novel stochastic group decision-making framework with dual hesitant fuzzy soft set for resilient supplier selection. J. Intell. Fuzzy Syst. 41, 1049–1067 (2021). https://doi.org/10.3233/JIFS-210025

    Article  Google Scholar 

  5. Haghighi, M.H., Mousavi, S.M., Mohagheghi, V.: Addressing resiliency in supply chains through a multi-criteria group evaluation approach under interval type-2 fuzzy uncertainty. Int. J. Appl. Manag. Sci. 14, 91–113 (2022)

    Article  Google Scholar 

  6. Ding, Q., Wang, Y.-M., Goh, M., Rodríguez, R.M., Martínez, L.: A hesitant fuzzy linguistic bidirectional projection-regret decision making model. Comput. Ind. Eng. 169, 108197 (2022). https://doi.org/10.1016/j.cie.2022.108197

    Article  Google Scholar 

  7. Li, C.-C., Dong, Y., Liang, H., Pedrycz, W., Herrera, F.: Data-driven method to learning personalized individual semantics to support linguistic multi-attribute decision making. Omega 111, 102642 (2022). https://doi.org/10.1016/j.omega.2022.102642

    Article  Google Scholar 

  8. Zhai, Y., Xu, Z.: Managing individual evaluator’s personalized semantic environment of linguistic term with improved vector expression in multi-granularity linguistic group decision making. Appl. Soft Comput. 92, 106334 (2020). https://doi.org/10.1016/j.asoc.2020.106334

    Article  Google Scholar 

  9. Ni, Y., Zhao, H., Xu, Z., Wang, Z.: Multiple attribute decision-making method based on projection model for dual hesitant fuzzy set. Fuzzy Optim. Decis. Mak. 21, 263–289 (2022). https://doi.org/10.1007/s10700-021-09366-9

    Article  MathSciNet  Google Scholar 

  10. Haldar, A., Ray, A., Banerjee, D., Ghosh, S.: Resilient supplier selection under a fuzzy environment. Int. J. Manag. Sci. Eng. Manag. 9, 147–156 (2014). https://doi.org/10.1080/17509653.2013.869040

    Article  Google Scholar 

  11. Gan, J., Zhong, S., Liu, S., Yang, D.: Resilient supplier selection based on fuzzy BWM and GMo-RTOPSIS under supply chain environment. Discrete Dyn. Nat. Soc. 2019, 2456260 (2019). https://doi.org/10.1155/2019/2456260

    Article  MathSciNet  Google Scholar 

  12. Hasan, M.M., Jiang, D., Ullah, A.M.M.S., Noor-E-Alam, Md.: Resilient supplier selection in logistics 4.0 with heterogeneous information. Expert Syst. Appl. 139, 112799 (2020). https://doi.org/10.1016/j.eswa.2019.07.016

    Article  Google Scholar 

  13. Xiong, L., Zhong, S., Liu, S., Zhang, X., Li, Y.: An approach for resilient-green supplier selection based on WASPAS, BWM, and TOPSIS under intuitionistic fuzzy sets. Math. Probl. Eng. 2020, 1761893 (2020). https://doi.org/10.1155/2020/1761893

    Article  MathSciNet  Google Scholar 

  14. Jiang, D., Hasan, Md.M., Faiz, T.I., Noor-E-Alam, Md.: A possibility distribution-based multicriteria decision algorithm for resilient supplier selection problems. J. Multi-Crit Decis. Anal. 27, 203–223 (2020). https://doi.org/10.1002/mcda.1696

    Article  Google Scholar 

  15. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8, 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  Google Scholar 

  16. Lin, H., You, J., Zhang, X.: Supplier selection with different risk preferences and attribute sets: an innovative study based on generalized linguistic term sets. Adv. Eng. Inform. 50, 101424 (2021). https://doi.org/10.1016/j.aei.2021.101424

    Article  Google Scholar 

  17. Ma, W., Lei, W., Sun, B.: Three-way group decisions under hesitant fuzzy linguistic environment for green supplier selection. Kybernetes 49, 2919–2945 (2020). https://doi.org/10.1108/K-09-2019-0602

    Article  Google Scholar 

  18. Dong, Y., Zheng, X., Xu, Z., Chen, W., Shi, H., Gong, K.: A novel decision-making framework based on probabilistic linguistic term set for selecting sustainable supplier considering social credit. Technol. Econ. Dev. Econ. 27, 1447–1480 (2021). https://doi.org/10.3846/tede.2021.15351

    Article  Google Scholar 

  19. Lin, M., Xu, Z., Zhai, Y., Yao, Z.: Multi-attribute group decision-making under probabilistic uncertain linguistic environment. J. Oper. Res. Soc. 69, 157–170 (2018). https://doi.org/10.1057/S41274-017-0182-y

    Article  Google Scholar 

  20. Wei, G., Lin, R., Lu, J., Wu, J., Wei, C.: The Generalized dice similarity measures for probabilistic uncertain linguistic MAGDM and its application to location planning of electric vehicle charging stations. Int. J. Fuzzy Syst. 24, 933–948 (2022). https://doi.org/10.1007/s40815-021-01084-z

    Article  Google Scholar 

  21. Wang, S., Wei, G., Lu, J., Wu, J., Wei, C., Chen, X.: GRP and CRITIC method for probabilistic uncertain linguistic MAGDM and its application to site selection of hospital constructions. Soft. Comput. 26, 237–251 (2022). https://doi.org/10.1007/s00500-021-06429-2

    Article  Google Scholar 

  22. Bashir, Z., Ali, J., Rashid, T.: Consensus-based robust decision making methods under a novel study of probabilistic uncertain linguistic information and their application in Forex investment. Artif. Intell. Rev. 54, 2091–2132 (2021). https://doi.org/10.1007/s10462-020-09900-y

    Article  Google Scholar 

  23. Song, Y., Li, G., Ergu, D., Liu, N.: An optimisation-based method to conduct consistency and consensus in group decision making under probabilistic uncertain linguistic preference relations. J. Oper. Res. Soc. 73, 840–854 (2022). https://doi.org/10.1080/01605682.2021.1873079

    Article  Google Scholar 

  24. He, Y., Wei, G., Chen, X., Wei, Y.: Bidirectional projection method for multi-attribute group decision making under probabilistic uncertain linguistic environment. J. Intell. Fuzzy Syst. (2021). https://doi.org/10.3233/JIFS-210313

    Article  Google Scholar 

  25. Sun, J., Liu, Y., Xu, J., Wang, N., Zhu, F.: A probabilistic uncertain linguistic FMEA model based on the extended ORESTE and regret theory. Comput. Ind. Eng. (2023). https://doi.org/10.1016/j.cie.2023.109251

    Article  Google Scholar 

  26. Shang, Z., Yang, X., Barnes, D., Wu, C.: Supplier selection in sustainable supply chains: Using the integrated BWM, fuzzy Shannon entropy, and fuzzy MULTIMOORA methods. Expert Syst. Appl. 195, 116567 (2022). https://doi.org/10.1016/j.eswa.2022.116567

    Article  Google Scholar 

  27. Chen, C.H.: A hybrid multi-criteria decision-making approach based on ANP-entropy TOPSIS for building materials supplier selection. Entropy 23, 1597 (2021). https://doi.org/10.3390/e23121597

    Article  MathSciNet  Google Scholar 

  28. Hussain, W., Merigó, J.M., Gao, H., Alkalbani, A.M., Rabhi, F.A.: Integrated AHP-IOWA, POWA framework for ideal cloud provider selection and optimum resource management. IEEE Trans. Serv. Comput. 16, 370–382 (2023). https://doi.org/10.1109/TSC.2021.3124885

    Article  Google Scholar 

  29. Bhayana, N., Gandhi, K., Jain, A., Darbari, J.D., Jha, P.C.: An integrated grey-based multi-criteria optimisation approach for sustainable supplier selection and procurement-distribution planning. Int. J. Adv. Oper. Manag. 13, 39–91 (2021). https://doi.org/10.1504/IJAOM.2021.113665

    Article  Google Scholar 

  30. Wei, Q., Zhou, C.: A multi-criteria decision-making framework for electric vehicle supplier selection of government agencies and public bodies in China. Environ. Sci. Pollut. Res. 30, 10540–10559 (2023). https://doi.org/10.1007/s11356-022-22783-6

    Article  Google Scholar 

  31. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015). https://doi.org/10.1016/j.omega.2014.11.009

    Article  Google Scholar 

  32. Karuppiah, K., Sankaranarayanan, B., Ali, S.M.: Evaluating the challenges to life cycle assessment using Best–Worst Method and decision-making trial and evaluation laboratory. Environ. Prog. Sustain. Energy 42, e13991 (2023). https://doi.org/10.1002/ep.13991

    Article  Google Scholar 

  33. El Baz, J., Tiwari, S., Akenroye, T., Cherrafi, A., Derrouiche, R.: A framework of sustainability drivers and externalities for Industry 4.0 technologies using the Best–Worst Method. J. Clean. Prod. 344, 130909 (2022). https://doi.org/10.1016/j.jclepro.2022.130909

    Article  Google Scholar 

  34. Mi, X., Liao, H.: An integrated approach to multiple criteria decision making based on the average solution and normalized weights of criteria deduced by the hesitant fuzzy best worst method. Comput. Ind. Eng. 133, 83–94 (2019). https://doi.org/10.1016/j.cie.2019.05.004

    Article  Google Scholar 

  35. Huang, G., Xiao, L., Pedrycz, W., Pamucar, D., Zhang, G., Martínez, L.: Design alternative assessment and selection: a novel Z-cloud rough number-based BWM-MABAC model. Inf. Sci. 603, 149–189 (2022). https://doi.org/10.1016/j.ins.2022.04.040

    Article  Google Scholar 

  36. Liao, H., Liu, Z., Banaitis, A., Zavadskas, E.K., Zhou, X.: Battery supplier development for new energy vehicles by a probabilistic linguistic UTASTAR method. Transport 37, 121–136 (2021). https://doi.org/10.3846/transport.2021.14710

    Article  Google Scholar 

  37. Ma, X., Qin, J., Martínez, L., Pedrycz, W.: A linguistic information granulation model based on best-worst method in decision making problems. Inf. Fusion 89, 210–227 (2023). https://doi.org/10.1016/j.inffus.2022.08.015

    Article  Google Scholar 

  38. Alimohammadlou, M., Sharifian, S.: Industry 4.0 implementation challenges in small- and medium-sized enterprises: an approach integrating interval type-2 fuzzy BWM and DEMATEL. Soft Comput. 27, 169–186 (2023). https://doi.org/10.1007/s00500-022-07569-9

    Article  Google Scholar 

  39. Hosseini Dolatabad, A., Heidary Dahooie, J., Antucheviciene, J., Azari, M., Razavi Hajiagha, S.H.: Supplier selection in the industry 40 era by using a fuzzy cognitive map and hesitant fuzzy linguistic VIKOR methodology. Environ. Sci. Pollut. Res. 30, 52923–52942 (2023). https://doi.org/10.1007/s11356-023-26004-6

    Article  Google Scholar 

  40. Yazdi, A.K., Wanke, P.F., Hanne, T., Abdi, F., Sarfaraz, A.H.: Supplier selection in the oil & gas industry: a comprehensive approach for multi-criteria decision analysis. Socioecon. Plan. Sci. 79, 101142 (2022). https://doi.org/10.1016/j.seps.2021.101142

    Article  Google Scholar 

  41. Giri, B.C., Molla, M.U., Biswas, P.: Pythagorean fuzzy DEMATEL method for supplier selection in sustainable supply chain management. Expert Syst. Appl. 193, 116396 (2022). https://doi.org/10.1016/j.eswa.2021.116396

    Article  Google Scholar 

  42. Mohammed, A., Harris, I., Soroka, A., Naim, M., Ramjaun, T., Yazdani, M.: Gresilient supplier assessment and order allocation planning. Ann. Oper. Res. 296, 335–362 (2021). https://doi.org/10.1007/s10479-020-03611-x

    Article  MathSciNet  Google Scholar 

  43. Lin, M., Huang, C., Xu, Z.: TOPSIS method based on correlation coefficient and entropy measure for linguistic Pythagorean fuzzy sets and its application to multiple attribute decision making. Complexity 2019, 6967390 (2019). https://doi.org/10.1155/2019/6967390

    Article  Google Scholar 

  44. Sun, G., Guan, X., Yi, X., Zhou, Z.: An innovative TOPSIS approach based on hesitant fuzzy correlation coefficient and its applications. Appl. Soft Comput. 68, 249–267 (2018). https://doi.org/10.1016/j.asoc.2018.04.004

    Article  Google Scholar 

  45. Mahmood, T., Ali, Z.: Entropy measure and TOPSIS method based on correlation coefficient using complex q-Rung orthopair fuzzy information and its application to multiple attribute decision making. Soft. Comput. 25, 1249–1275 (2021). https://doi.org/10.1007/s00500-020-05218-7

    Article  Google Scholar 

  46. Zulqarnain, R.M., Xin, X.L., Siddique, I., Asghar Khan, W., Yousif, M.A.: TOPSIS method based on correlation coefficient under Pythagorean fuzzy soft environment and its application towards green supply chain management. Sustainability. 13, 1642 (2021). https://doi.org/10.3390/su13041642

    Article  Google Scholar 

  47. Gurmani, S.H., Chen, H., Bai, Y.: Extension of TOPSIS method under q-Rung orthopair fuzzy hypersoft environment based on correlation coefficients and its applications to multi-attribute group decision-making. Int. J. Fuzzy Syst. 25, 1–14 (2023). https://doi.org/10.1007/s40815-022-01386-w

    Article  Google Scholar 

  48. Guan, X., Sun, G., Yi, X., Zhou, Z.: Synthetic correlation coefficient between hesitant fuzzy sets with applications. Int. J. Fuzzy Syst. 20, 1968–1985 (2018). https://doi.org/10.1007/s40815-018-0496-1

    Article  Google Scholar 

  49. Gou, X., Xu, Z., Liao, H.: Multiple criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information. Soft. Comput. 21, 6515–6529 (2017). https://doi.org/10.1007/s00500-016-2211-1

    Article  Google Scholar 

  50. Amindoust, A.: A resilient-sustainable based supplier selection model using a hybrid intelligent method. Comput. Ind. Eng. 126, 122–135 (2018). https://doi.org/10.1016/j.cie.2018.09.031

    Article  Google Scholar 

  51. Fallahpour, A., Nayeri, S., Sheikhalishahi, M., Wong, K.Y., Tian, G., Fathollahi-Fard, A.M.: A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-12491-y

    Article  Google Scholar 

  52. Li, L., Chen, Q., Li, X., Gou, X.: An Improved PL-VIKOR model for risk evaluation of technological innovation projects with probabilistic linguistic term sets. Int. J. Fuzzy Syst. 23, 419–433 (2021). https://doi.org/10.1007/s40815-020-00971-1

    Article  Google Scholar 

  53. Zhao, M., Gao, H., Wei, G., Wei, C., Guo, Y.: Model for network security service provider selection with probabilistic uncertain linguistic TODIM method based on prospect theory. Technol. Econ. Dev. Econ. 28, 638–654 (2022). https://doi.org/10.3846/tede.2022.16483

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the key project of National Natural Science Foundation of China (Grant No. U1904211); Training Program for Young Backbone Teachers in Higher Education Institutions of Henan Province (Grant No. 2021GGJS006); Support Program for Innovative Talents in Philosophy and Social Science of Henan Province (Grant No. 2023-CXRC-19); Precision Disciplines Support Program of Zhengzhou University (Grant No. XKLMJX202201); Outstanding Young Research Team in Social Sciences of Zhengzhou University (Grant No. 2023-QNTD-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Appendix 1

Appendix 1

See Tables 11, 12, 13.

Table 11 The evaluation information of ex1
Table 12 The evaluation information of ex2
Table 13 The evaluation information of ex3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Liu, Y., Xu, J. et al. A Probabilistic Uncertain Linguistic Decision-Making Model for Resilient Supplier Selection Based on Extended TOPSIS and BWM. Int. J. Fuzzy Syst. 26, 992–1015 (2024). https://doi.org/10.1007/s40815-023-01649-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01649-0

Keywords

Navigation