Skip to main content
Log in

Mixed \(H_2/H_\infty\) Fault-Tolerant Sampled-Data Fuzzy Control for Nonlinear Parabolic PDE Systems Under Deception Attacks

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses mixed \(H_2/H_\infty\) fault-tolerant sampled-data (SD) fuzzy control for nonlinear space-varying parabolic partial differential equation (PDE) system under deception attacks. Firstly, a T–S fuzzy PDE model is given to exactly describe the nonlinear space-varying parabolic PDE system. Secondly, a fault-tolerant SD fuzzy controller via the spatial linear matrix inequalities (SLMIs) is developed based on a Lyapunov functional which is continuous at sampling times but not necessary to be positive definite in sampling intervals such that the closed-loop PDE system is exponentially stable with a mixed \(H_2/H_\infty\) performance. Then, to solve the SLMIs, the fault-tolerant SD fuzzy control problem for space-varying parabolic PDE system is formulated as linear matrix inequality feasibility problem. Furthermore, the design condition of the suboptimal mixed \(H_2/H_\infty\) fault-tolerant SD controller subject to deception attacks can be derived by considering the property of membership functions. Lastly, two examples are given to illustrate the design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ray, W.-H.: Advanced Process Control. McGraw-Hill, New York (1981)

    Google Scholar 

  2. Li, H.-X., Deng, H., Zhong, J.: Model-based integration of control and supervision for one kind of curing process. IEEE Trans. Electron. Packag. Manuf. 27(3), 177–186 (2004)

    Article  Google Scholar 

  3. Christofides, P.-D.: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Birkhäser, Boston (2001)

    Book  MATH  Google Scholar 

  4. Hagen, G., Mezic, I., Bamieh, B.: Distributed control design for parabolic evolution equations: application to compressor stall control. IEEE Trans. Autom. Control 49(8), 1247–1258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demetriou, M.A.: Guidance of mobile actuator-plus-sensor networks for improved control and estimation of distributed parameter systems. IEEE Trans. Autom. Control 55(7), 1570–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Smyshlyaev, A., Krstic, M.: Adaptive Control of Parabolic PDEs. Princeton University Press, Princeton, NJ (2010)

    Book  MATH  Google Scholar 

  7. Ho, S.-J., Chen, B.-S.: Robust fuzzy \(H_\infty\) estimator-based stabilization design for nonlinear parabolic partial differential systems with different boundary conditions. IEEE Trans. Fuzzy Syst. 24(1), 208–222 (2015)

    Article  Google Scholar 

  8. Wang, J.-W., Wu, H.-N., Yu, Y., Sun, C.-Y.: Mixed \(H_2/H_\infty\) fuzzy proportional-spatial integral control design for a class of nonlinear distributed parameter systems. Fuzzy Sets Syst. 306, 26–47 (2017)

    Article  MATH  Google Scholar 

  9. Zhang, X.-W., Wu, H.-N., Wang, J.-W.: Mixed \(H_2/H_\infty\) fuzzy control plus mobile actuator/sensor guidance for semilinear parabolic distributed parameter systems. IEEE Trans. Fuzzy Syst. 29(7), 1874–1884 (2021)

    Article  Google Scholar 

  10. Wang, Z.-P., Wu, H.-N.: On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach. IEEE Trans. Cybern. 45(4), 819–829 (2015)

    Article  Google Scholar 

  11. Zeng, H.-B., Teo, K.L., He, Y.: A new looped-functional for stability analysis of sampled-data systems. Automatica 82, 328–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, R., Zeng, D., Park, J.H., Liu, Y., Zhong, S.: A new approach to stabilization of chaotic systems with nonfragile fuzzy proportional retarded sampled-data control. IEEE Trans. Cybern. 49(9), 3218–3229 (2019)

    Article  Google Scholar 

  13. Xia, J., Chen, G., Park, J.H., Shen, H., Zhuang, G.: Dissipativity-based sampled-data control for fuzzy switched markovian jump systems. IEEE Trans. Fuzzy Syst. 29(6), 1325–1339 (2020)

    Article  Google Scholar 

  14. Li, S., Deng, F., Xing, M., Xiao, J.: \(H_\infty\) filtering of stochastic fuzzy systems based on hybrid modeling technique with aperiodic sampled-data. Int. J. Fuzzy Syst. 23, 2106–2117 (2021)

    Article  Google Scholar 

  15. Chen, G., Xia, J., Park, J. H., Shen, H., Zhuang, G.: Robust sampled-data control for switched complex dynamical networks with actuators saturation. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3069813

  16. Wang, J.-W., Wang, J.-M.: Mixed \(H_2/H_\infty\) sampled-data output feedback control design for a semi-linear parabolic PDE in the sense of spatial \(L_\infty\) norm. Automatica 103, 282–293 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Z.-P., Li, H.-X., Wu, H.-N.: Sampled-data fuzzy control for a class of nonlinear parabolic distributed parameter systems under spatially point measurements. Fuzzy Sets Syst. 374(1), 60–81 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Wang, Z.-P., Wu, H.-N., Wang, X.-H.: Sampled-data fuzzy control with space-varying gains for nonlinear time-delay parabolic PDE systems. Fuzzy Sets Syst. 392, 170–194 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z.-P., Wu, H.-N.: Sampled-data fuzzy control with guaranteed cost for nonlinear parabolic PDE systems via static output feedback. IEEE Trans. Fuzzy Syst. 28(10), 2452–2465 (2020)

    Article  Google Scholar 

  20. Cao, F., Sun, H., Li, Y., Tong, S.: Fuzzy adaptive fault-tolerant control for a class of active suspension systems with time delay. Int. J. Fuzzy Syst. 21, 2054–2065 (2019)

    Article  MathSciNet  Google Scholar 

  21. Yang, H., Jiang, Y., Yin, S.: Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults. IEEE Trans. Fuzzy Syst. 29(4), 772–785 (2020)

    Article  Google Scholar 

  22. Li, S., Kang, W., Ding, D.-W.: Observer-based fuzzy fault-tolerant control for nonlinear parabolic PDEs. Int. J. Fuzzy Syst. 22, 111–121 (2020)

    Article  Google Scholar 

  23. Bessa, I., Puig, V., Palhares, R.M.: Passivation blocks for fault tolerant control of nonlinear systems. Automatica 125, 109450 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, X., Wang, M., Ahn, C. K., Song, S.: Finite-time fuzzy bounded control for semilinear PDE systems with quantized measurements and markov jump actuator failures. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3049842

  25. Gao, H., He, W., Zhang, Y., Sun, C.: Adaptive finite-time fault-tolerant control for uncertain flexible flapping wings based on rigid finite element method. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2020.3045786

  26. Mao, Z., Jiang, B., Shi, P.: Fault-tolerant control for a class of nonlinear sampled-data systems via a Euler approximate observer. Automatica 46(11), 1852–1859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sakthivel, R., Selvaraj, P., Mathiyalagan, K., Park, J.H.: Robust fault-tolerant \(H_\infty\) control for offshore steel jacket platforms via sampled-data approach. J. Franklin Inst. 352(6), 2259–2279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, H., Ma, Y., Liu, J.: Extended dissipative analysis for T-S fuzzy system with sampled-data input and actuator fault. Int. J. Syst. Sci. 51(16), 3179–3198 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fang, F., Ding, H., Liu, Y., Park, J.H.: Fault tolerant sampled-data \(H_\infty\) control for networked control systems with probabilistic time-varying delay. Inf. Sci. 544, 395–414 (2021)

    Article  MATH  Google Scholar 

  30. Zhao, J., Xu, S., Park, J.H.: Improved criteria for the stabilization of T-S fuzzy systems with actuator failures via a sampled-data fuzzy controller. Fuzzy Sets Syst. 392(1), 154–169 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, S., Yue, D., Xie, X., Chen, X., Yin, X.: Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans. Cybern. 49(12), 4271–4281 (2019)

    Article  Google Scholar 

  32. Zhang, X.-M., Han, Q.-L., Ge, X., Ding, L.: Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks. IEEE Trans. Cybern. 50(8), 3616–3626 (2020)

    Article  Google Scholar 

  33. Xu, Y., Fang, M., Pan, Y.-J., Shi, K., Wu, Z.-G.: Event-triggered output synchronization for nonhomogeneous agent systems with periodic denial-of-service attacks. Int. J. Robust Nonlinear Control. 31(6), 1851–1865 (2021)

    Article  MathSciNet  Google Scholar 

  34. Ma, Y.-S., Che, W.-W., Deng, C., Wu, Z.-G.: Distributed model-free adaptive control for learning nonlinear MASs wnder DoS attacks. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3104978

  35. Hou, N., Wang, Z., Ho, D.W.C., Dong, H.: Robust partial-nodes-based state estimation for complex networks under deception attack. IEEE Trans. Cybern. 50(6), 2793–2802 (2020)

    Article  Google Scholar 

  36. Sheng, S., Zhang, X., Lu, Y., Lu, G.: Consensus-based estimation for type-2 fuzzy time-delay systems under deception attacks and partial information exchange. Int. J. Fuzzy Syst. 23, 1462–1477 (2021)

    Article  Google Scholar 

  37. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  38. Liu, J., Wang, Y., Zha, L., Yan, H.: Event-based control for networked T-S fuzzy cascade control systems with quantization and cyber attacks. J. Franklin Inst. 356(16), 9451–9473 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ariño, C., Sala, A.: Extensions to ‘stability analysis of fuzzy control systems subject to uncertain grades of membership’. IEEE Trans. Syst. Man Cybern. B (Cybern.). 38(2), 558–563 (2008)

  40. Zhu, X.-L., Chen, B., Wang, Y., Yue, D.: \(H_\infty\) stabilization criterion with less complexity for nonuniform sampling fuzzy systems. Fuzzy Sets Syst. 225(16), 58–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. MathWorks, Inc, Natick, MA (1995)

    Google Scholar 

  42. Wu, H.-N., Wang, J.-W., Li, H.-X.: Exponential stabilization for a class of nonlinear parabolic PDE systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 20(2), 318–329 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China under Grants 62073011, 61973135, 91948201, and 51905109, in part by the Shandong Provincial Natural Science Foundation under Grant ZR2021MF004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Peng Wang.

Appendices

Appendix A

Proof of Theorem 1

Considering the Lyapunov functional (18), one has

$$\begin{aligned} {\dot{V}}_1(t)\,=\, & {} 2\int _\Omega z^{\mathrm{T}}(x,t)P_1z_t(x,t){\text d}x \end{aligned}$$
(A1)
$$\begin{aligned} {\dot{V}}_2(t)\,=\, & {} 2\int _\Omega z_x^{\mathrm{T}}(x,t)P_2\Upsilon (x) z_{xt}(x,t){\text d}x \end{aligned}$$
(A2)
$$\begin{aligned} {\dot{V}}_3(t)\,=\, & {} 2\psi (t)\int _\Omega {\tilde{z}}^{\mathrm{T}}(x,t)X_1 z_t(x,t){\text d}x\nonumber \\&+2\psi (t)\int _\Omega (z(x,t)-{\tilde{z}}(x,t))^{\mathrm{T}}X_2{\tilde{z}}_t(x,t){\text d}x\nonumber \\&-\int _\Omega {\tilde{z}}^{\mathrm{T}}(x,t)X_1{\tilde{z}}(x,t){\text d}x\nonumber \\&-2\int _\Omega (z(x,t)-{\tilde{z}}(x,t))^{\mathrm{T}}X_2{\tilde{z}}(x,t){\text d}x \end{aligned}$$
(A3)
$$\begin{aligned} {\dot{V}}_4(t)\,=\, & {} -2\delta V_4(t)+\psi (t)\int _\Omega \zeta ^{\mathrm{T}}(x,t)Q\zeta (x,t){\text d}x \nonumber \\&-\int _\Omega \int _{t_k}^{t} \text {e}^{2\delta (\varsigma -t)}\zeta ^{\mathrm{T}}(x,\varsigma )Q\zeta (x,\varsigma )d\varsigma {d}x.~~~~~~~~ \end{aligned}$$
(A4)

Let \(\xi (x,t)=[z^{\mathrm{T}}(x,t)\ z^{\mathrm{T}}(x,t_k)\ z_t^{\mathrm{T}}(x,t)~ z_x^{\mathrm{T}}(x,t)]^{\mathrm{T}}\). For any matrices \({\mathcal M}_{ij}\in {\mathbb {R}}^{4n_z\times n_z}\), due to \({\tilde{z}}(x,t)=z(x,t)-z(x,t_k)=\int _{t_k}^{t}z_\varsigma (x,\varsigma )d\varsigma\), we have

$$\begin{aligned} 0\,=\, & {} 2\int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)) \xi ^{\mathrm{T}}(x,t){\mathcal M}_{ij}\nonumber \\&~~~~~~~~~\times [{\tilde{z}}(x,t)-\int _{t_k}^{t}z_\varsigma (x,\varsigma )d\varsigma ]{\text d}x. \end{aligned}$$
(A5)

Then, we can derive from the system (19)

$$\begin{aligned} 0=&\;2\int _\Omega \xi ^{\mathrm{T}}(x,t){\mathcal P}\left[ \{\Upsilon (x) z_{x}(x,t)\}_x \right. \nonumber \\&\left. \;+\sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k))(A_i(x)z(x,t) \right. \nonumber \\&\left. \;+G_{1i}(x){\mathcal F}K_jz(x,t_k)-z_t(x,t)\right] {\text d}x\nonumber \\ =&\;2\int _\Omega \xi ^{\mathrm{T}}(x,t){\mathcal P}\{\Upsilon (x) z_{x}(x,t)\}_x {\text d}x\nonumber \\&\;+\int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k))\nonumber \\&\;\times [\xi ^{\mathrm{T}}(x,t)({\mathcal P}{\mathcal A}_{ij}(x)+{\mathcal A}_{ij}^{\mathrm{T}}(x){\mathcal P}^{\mathrm{T}})\xi (x,t)]. \end{aligned}$$
(A6)

Considering \(P_2\Upsilon (x)=\Upsilon (x)P_2^{\mathrm{T}}>0\), we integrate (A6) by parts such that the equalities are obtained as follows:

$$\begin{aligned}&2\int _\Omega \xi ^{\mathrm{T}}(x,t){\mathcal P}\{\Upsilon (x) z_{x}(x,t)\}_{x} {\text d}x\nonumber \\\,=\, & {} -2\int _\Omega \xi _x^{\mathrm{T}}(x,t){\mathcal P}\Upsilon (x) z_{x}(x,t){\text d}x\nonumber \\\,=\, & {} -2\int _\Omega z_x^{\mathrm{T}}(x,t){\mathcal P}_1\Upsilon (x) z_x(x,t){\text d}x \nonumber \\&-2\int _\Omega z_{tx}^{\mathrm{T}}(x,t)P_2\Upsilon (x) z_{x}(x,t){\text d}x\nonumber \\\,=\, & {} -\int _\Omega z_x^{\mathrm{T}}(x,t)\{{\mathcal P}_1 \Upsilon (x)+\Upsilon (x){\mathcal P}_1^{\mathrm{T}}\} z_x(x,t){\text d}x\nonumber \\&-2\int _\Omega z_{xt}^{\mathrm{T}}(x,t)P_2\Upsilon (x) z_{x}(x,t){\text d}x\nonumber \\\,=\, & {} -\int _\Omega z_x^{\mathrm{T}}(x,t)\{{\mathcal P}_1\Upsilon (x)+\Upsilon (x){\mathcal P}_1^{\mathrm{T}}\} z_x(x,t){\text d}x \nonumber \\&-2\int _\Omega z_{x}^{\mathrm{T}}(x,t)P_2\Upsilon (x) z_{xt}(x,t){\text d}x \end{aligned}$$
(A7)

According to (A1)–(A7), one can derive

$$\begin{aligned}&{\dot{V}}(t)+2\delta V(t)\nonumber \\\leqslant & {} \int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k))\nonumber \\&\times \left\{ \xi ^{\mathrm{T}}(x,t)[\Xi _{1ij}(x)+\psi (t)\Xi _{2,1}]\xi (x,t) \right. \nonumber \\&\left. -\int _{t_k}^{t} \left[ \begin{array}{cc}\xi (x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] ^{\mathrm{T}} \Xi _{3ij} \left[ \begin{array}{cc}\xi (x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] d\varsigma \right\} {\text d}x \nonumber \\\,=\,&{}\int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)) \nonumber \\&\times \{\frac{1}{h_k}\int _{t_k}^{t} \left[ \begin{array}{cc}\xi (x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] ^{\mathrm{T}} \Theta _{2ij}(x,h_k) \left[ \begin{array}{cc}\xi (x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] d\varsigma \nonumber \\&+\frac{\psi (t)}{h_k}\xi ^{\mathrm{T}}(x,t)\Theta _{1ij}(x,h_k)\xi (x,t)\}{\text d}x. \end{aligned}$$
(A8)

Then, from (20), we can have \({\dot{V}}(t)\le 2\delta V(t)\), \(t\in [t_k,t_{k+1})\).

Considering \(V(t_k)=V_1(t_k)+V_2(t_k)\), we obtain

$$\begin{aligned} V(0)\le & {} \lambda _{\max }(P_1) \Vert z(\cdot ,t_0)\Vert ^2_2\nonumber \\&+\lambda _{\max }(P_2\Upsilon (x)) \Vert z_x(\cdot ,t_0)\Vert ^2_2\nonumber \\\le & {} \kappa \{\Vert z(\cdot ,t_0)\Vert ^2_2+\Vert z_x(\cdot ,t_0)\Vert ^2_2\} \end{aligned},$$
(A9)

where \(\kappa >0\) is a scalar. Moreover, one has

$$\begin{aligned} \Vert z(\cdot ,t_k)\Vert ^2_2\le & {} \frac{1}{\lambda _1}e^{-2\delta (t_k-t_0)}V(0)\nonumber \\\le & {} \frac{\kappa }{\lambda _1}\left\{ \Vert z(\cdot ,t_0)\Vert ^2_2 +\Vert z_x(\cdot ,t_0)\Vert ^2_2\right\} e^{-2\delta (t_k-t_0)} \end{aligned}$$
(A10)

in which \(\lambda _1=\lambda _{\min }(P_1)\). For any given \(t>t_{0}\), there exists a \(k_0\in {\mathbb {N}}\) such that \(t\in [t_{k_{0}},t_{k_{0+1}})\). According to Lemma 1, the following inequality is derived

$$\begin{aligned} \Vert z(\cdot ,t)\Vert ^{2}_{2}\le & {} d_{0} \Vert z(\cdot ,t_{k_0})\Vert ^2_{2}\nonumber \\\le & {} \frac{\kappa }{\lambda _{1}}e^{2\delta h}\left\{ \Vert z(\cdot ,t_0)\Vert ^2_{2} +\Vert z_x(\cdot ,t_0)\Vert ^2_2\right\} e^{-2\delta (t-t_0)}. \end{aligned}$$
(A11)

Hence, the SD fuzzy system (10) is exponentially stable. \(\square\)

Appendix B

Proof of Theorem 2

Along the trajectory (10), one derives

$$\begin{aligned} 0=&\;2\int _\Omega \xi ^{\mathrm{T}}(x,t){\mathcal P}\left[ \{\Upsilon (x) z_{x}(x,t)\}_x \right. \nonumber \\&\left. \;+\sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)) \right. \nonumber \\&\left. \;~\times (A_i(x)z(x,t)+G_{1i}(x)\left( {\mathcal F}K_jz(x,t_k)\right. \right. \nonumber \\&\left. \left. \;~~~~~~~~~~~+\nu (x,t_k)\right) +G_{2i}(x)w(x,t))-z_t(x,t)\right] {\text d}x \nonumber \\ =&\;2\int _\Omega \xi ^{\mathrm{T}}(x,t){\mathcal P}\{\Upsilon (x) z_{x}(x,t)\}_x {\text d}x\nonumber \\&\;+\int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k))[\xi ^{\mathrm{T}}(x,t)\nonumber \\&\;\times ({\mathcal P}{\mathcal A}_{ij}(x)+{\mathcal A}_{ij}^{\mathrm{T}}(x){\mathcal P}^{\mathrm{T}})\xi (x,t)+2\xi ^{\mathrm{T}}(x,t){\mathcal P}\nonumber \\&\;\times (G_{1i}(x)\nu (x,t_k)+G_{2i}(x)w(x,t))]{\text d}x. \end{aligned}$$
(B1)

Next, according to (8), we have

$$\begin{aligned}&\int _\Omega z^{\mathrm{T}}(x,t_k)H^{\mathrm{T}}Hz(x,t_k){\text d}x\nonumber \\&~~-\int _\Omega \nu ^{\mathrm{T}}(x,t_k)\nu (x,t_k){\text d}x\ge 0. \end{aligned}$$
(B2)

Moreover, one obtains

$$\begin{aligned} ~~\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t_k))\sigma _j(\varrho (x,t_k))z^{\mathrm{T}}(x,t_k)K_j^{\mathrm{T}}\bar{{\mathcal F}}K_jz(x,t_k)\nonumber \\ \le \frac{1}{2}\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t_k))\sigma _j(\varrho (x,t_k))z^{\mathrm{T}}(x,t_k)~~~~~~~~\nonumber \\ \times (K_i^{\mathrm{T}}\bar{{\mathcal F}}K_iz(x,t_k)+K_j^{\mathrm{T}}\bar{{\mathcal F}}K_jz(x,t_k))z(x,t_k)~~~~~\nonumber \\ =\sum _{j=1}^r\sigma _j(\varrho (x,t_k))z^{\mathrm{T}}(x,t_k)K_j^{\mathrm{T}}\bar{{\mathcal F}}K_jz(x,t_k)~~~~~~~~~~ \end{aligned}$$

in which \(\bar{{\mathcal F}}={\mathcal F}^{\mathrm{T}}{\mathcal F}\).

Then, the \(H_\infty\) performance and \(H_2\) performance of nonlinear space-varying parabolic PDE systems are analyzed. Firstly, the \(H_2\) performance analysis is presented.

(1) \(H_2\) performance analysis:

By using (A1)–(A5), (A7), (B1) with \(w(x,t)=0\), and (B2), we obtain

$$\begin{aligned}&{\dot{V}}(t)+2\delta V(t)+\Vert C_{m} z(\cdot ,t)\Vert _2^2+\Vert D_{m} u^f(\cdot ,t)\Vert _2^2\nonumber \\\le & {} \int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)) \nonumber \\&\times \{\frac{1}{h_k}\int _{t_k}^{t} \left[ \begin{array}{cc}{\tilde{\xi }}(x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] ^{\mathrm{T}} {\mathcal T}_{2ij}(x,h_k) \left[ \begin{array}{cc}{\tilde{\xi }}(x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] d\varsigma \nonumber \\&~~~~~~~~~~~+\frac{\psi (t)}{h_k}{\tilde{\xi }}^{\mathrm{T}}(x,t){\mathcal T}_{1ij}(x,h_k){\tilde{\xi }}(x,t)\}{\text d}x \end{aligned},$$
(B3)

where

$$\begin{aligned} {\tilde{\xi }}(x,t)\,=\, & {} [\xi ^{\mathrm{T}}(x,t) ~ \nu ^{\mathrm{T}}(x,t_k)]^{\mathrm{T}}. \end{aligned}$$

It follows from (21) that

$$\begin{aligned} {\mathcal T}_{\iota ij}(x,h)<0 \end{aligned}$$
(B4)

and

$$\begin{aligned} {\mathcal T}_{\iota ij}(x,\epsilon )<0. \end{aligned}$$
(B5)

Then, according to (B4) and (B5), we get

$$\begin{aligned} {\mathcal T}_{\iota ij}(x,h_k)=\frac{h_k-\epsilon }{h-\epsilon }{\mathcal T}_{\iota ij}(x,h) +\frac{h-h_k}{h-\epsilon }{\mathcal T}_{\iota ij}(x,\epsilon )<0. \end{aligned}$$

Therefore, we have the following inequalities:

$$\begin{aligned}&\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)){\mathcal T}_{\iota ij}(x,h_k)<0~ \end{aligned},$$
(B6)

where \(\iota =1,2\). Next, by (B6), one can have

$$\begin{aligned} {\dot{V}}(t)+2\delta V(t)+\Vert C_{m} z(\cdot ,t)\Vert _2^2+\Vert D_{m} u^f(\cdot ,t)\Vert _2^2\le 0. \end{aligned}$$
(B7)

Integration of inequality (B7) from \(t=0\) to \(t=t_f\) gives

$$\begin{aligned}&J=\int _0^{t_f}[\Vert C_m z(\cdot ,t)\Vert ^2_2+\Vert D_m u^f(\cdot ,t)\Vert ^2_2]{\text d}t\nonumber \\&~~~~~~~\le V(0)-V(t_f). \end{aligned}$$
(B8)

Then, the following inequality is deduced:

$$\begin{aligned}&J\le V(0)=\int _\Omega z_0^{\mathrm{T}}(x)P_1z_0(x){\text d}x\nonumber \\&~~~~~~~~~~~~~+\int _\Omega (\frac{\partial z_0(x)}{\partial x})^{\mathrm{T}} P_2\Upsilon (x) \frac{\partial z_0(x)}{\partial x}{\text d}x. \end{aligned}$$
(B9)

Next, the \(H_2\) performance (22) is obtained from (B9).

(2) \(H_\infty\) performance analysis:

By using (A1)–(A5), (A7), (B1), and (B2), one can derive

$$\begin{aligned}&{\dot{V}}(t)+2\delta V(t)+\Vert y(\cdot ,t)\Vert _2^2-\gamma ^2\Vert w(\cdot ,t)\Vert _2^2\nonumber \\\le & {} \int _\Omega \sum _{i=1}^r\sum _{j=1}^r \sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)) \nonumber \\&\times \{\frac{1}{h_k}\int _{t_k}^{t} \left[ \begin{array}{cc}{\hat{\xi }}(x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] ^{\mathrm{T}} {\mathcal T}_{4ij}(x,h_k) \left[ \begin{array}{cc}{\hat{\xi }}(x,t) \\ z_\varsigma (x,\varsigma )\end{array}\right] d\varsigma \nonumber \\&~~~~~~~~~~~+\frac{\psi (t)}{h_k}{\hat{\xi }}^{\mathrm{T}}(x,t){\mathcal T}_{3ij}(x,h_k){\hat{\xi }}(x,t)\}{\text d}x \end{aligned},$$
(B10)

where

$$\begin{aligned} {\hat{\xi }}(x,t)\,=\, & {} [{\tilde{\xi }}^{\mathrm{T}}(x,t) ~w^{\mathrm{T}}(x,t)]^{\mathrm{T}}. \end{aligned}$$

It follows from (21) that

$$\begin{aligned}&\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k)){\mathcal T}_{\iota ij}(x,h_k)<0 ~~ \end{aligned},$$
(B11)

where \(\iota =3,4\). It is obvious that the inequality is ensured by (B11) as follows:

$$\begin{aligned} {\dot{V}}(t)+2\delta V(t)+\Vert y(\cdot ,t)\Vert _2^2-\gamma ^2\Vert w(\cdot ,t)\Vert _2^2\le 0. \end{aligned}$$
(B12)

Under the zero condition, integration the above inequality from \(t=0\) to \(t=t_f\) yields

$$\begin{aligned}&\int _0^{t_f}\Vert y(\cdot ,t)\Vert _2^2{\text d}t \le V(0)-V(t_f)\nonumber \\&~~~~~~~~~~~~~~~~~~~~~+\gamma ^2\int _0^{t_f} \Vert w(\cdot ,t)\Vert _2^2{\text d}t. \end{aligned}$$
(B13)

Then, the \(H_\infty\) performance (11) holds. \(\square\)

Appendix C

Proof of Theorem 3

Denote

$$\begin{aligned} W\triangleq & {} {\bar{W}}^{-1}\\ {\bar{P}}_1\triangleq & {} {\bar{W}}^{\mathrm{T}}P_1{\bar{W}},~{\bar{X}}\triangleq {\bar{W}}^{\mathrm{T}}X{\bar{W}}\\ \Lambda _1\triangleq & {} \text {diag} \{{\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}},{\bar{W}}^{\mathrm{T}},I_{n_z},I_{n_z},I_{n_z}\}\\ \Lambda _2\triangleq & {} \text {diag} \{{\bar{W}}^{\mathrm{T}},{\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}},I_{n_z}, {\bar{W}}^{\mathrm{T}},I_{n_z},I_{n_z}\}\\ \Lambda _3\triangleq & {} \text {diag} \{{\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}},{\bar{W}}^{\mathrm{T}},I_{n_z},I_{n_w},I_{n_z},I_{n_z}\}\\ \Lambda _4\triangleq & {} \text {diag} \{{\bar{W}}^{\mathrm{T}},{\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}}, {\bar{W}}^{\mathrm{T}},I_{n_z},I_{n_w},{\bar{W}}^{\mathrm{T}},I_{n_z},I_{n_z}\}\\ {\bar{Q}}\triangleq & {} \left[ \begin{array}{cc}{\bar{Q}}_{11} &{} {\bar{Q}}_{12} \\ {*} &{}{\bar{Q}}_{22} \end{array}\right] = \left[ \begin{array}{cc}{\bar{W}}^{\mathrm{T}} &{} 0 \\ {*} &{}{\bar{W}}^{\mathrm{T}} \end{array}\right] Q \left[ \begin{array}{cc}{\bar{W}} &{} 0 \\ {*} &{}{\bar{W}} \end{array}\right] \nonumber \\ {\mathcal P}\triangleq & {} \text {diag}\{ W^{\mathrm{T}},\ W^{\mathrm{T}}, \ W^{\mathrm{T}}, \ W^{\mathrm{T}}\}{\mathcal L}\\ {\mathcal L}\triangleq & {} \left[ r_{1}I_{n_z}\ 0_{n_z}\ r_{2}I_{n_z} \ 0_{n_z} \right] ^{\mathrm{T}} \\ \bar{{\mathcal M}}_{ij}\triangleq & {} \text {diag} \{{\bar{W}}^{\mathrm{T}},\ {\bar{W}}^{\mathrm{T}},\ {\bar{W}}^{\mathrm{T}},{\bar{W}}^{\mathrm{T}}\}{\mathcal M}_{ij}{\bar{W}}. \end{aligned}$$

We multiply the left side of SLMIs (20) with \(\Lambda _{\iota }\), and multiply the right side of SLMIs (20) with \(\Lambda _{\iota }^{\mathrm{T}}\). The proof is complete. \(\square\)

Appendix D

Proof of Theorem 4

The space-dependent terms are represented by the following form to solve the SLMIs:

$$\begin{aligned} \Upsilon (x)\,=\, & {} \sum _{s=1}^{2^\chi }\omega _s(x)\Upsilon _s,x\in \Omega \nonumber \\ A_i(x)\,=\, & {} \sum _{q=1}^{2^{{\bar{\chi }}}}{\bar{\omega }}_{q}(x)A_{i,q},x\in \Omega \nonumber \\ G_{1i}(x)\,=\, & {} \sum _{v=1}^{2^{{\tilde{\chi }}}}{\tilde{\omega }}_{v}(x)G_{1i,v},x\in \Omega \nonumber \\ G_{2i}(x)\,=\, & {} \sum _{g=1}^{2^{\breve{\chi }}}\breve{\omega }_{g}(x)G_{2i,g},x\in \Omega \end{aligned},$$
(D1)

where \(\omega _s(x)\) are deduced via a combination of \(\varsigma _{d\varpi }(x)\) in \(\Upsilon (x)\) with

$$\begin{aligned} \varsigma _{d1}(x)\,=\, & {} \frac{\gamma (x)-\min \limits _{x\in \Omega }\{\gamma (x)\}}{\max \limits _{x\in \Omega }\{\gamma (x)\}-\min \limits _{x\in \Omega }\{\gamma (x)\}},\\ \varsigma _{d2}(x)\,=\, & {} 1-\varsigma _{d1}(x), \end{aligned}$$

\(d\in \{1,2,\ldots ,\chi \}, \varpi =1,2\), \(\chi \leqslant n_z^2\) is the number of space-dependent elements of \(\Upsilon (x)\). The remaining space-dependent terms are represented in a similar way according to (D1), where \({\bar{\chi }}\leqslant n_z^2\), \({\tilde{\chi }}\leqslant n_zn_u\) , and \(\breve{\chi }\leqslant n_zn_w\).

In addition, one obtains

$$\begin{aligned}&\sum \limits _{s=1}^{2^\chi } \omega _s(x) = 1, \omega _s(x) \geqslant 0, s \in {\mathcal U}_1\triangleq \{1,2,\ldots ,2^\chi \},\\&\sum \limits _{q=1}^{2^{{\bar{\chi }}}} {\bar{\omega }}_{q}(x) = 1, {\bar{\omega }}_{q}(x) \geqslant 0,q \in {\mathcal U}_2\triangleq \{1,2,\ldots ,2^{{\bar{\chi }}}\},\\&\sum \limits _{v=1}^{2^{{\tilde{\chi }}}} {\tilde{\omega }}_{v}(x) = 1, {\tilde{\omega }}_{v}(x) \geqslant 0,v \in {\mathcal U}_3\triangleq \{1,2,\ldots ,2^{{\tilde{\chi }}}\},\\&\sum \limits _{g=1}^{2^{\breve{\chi }}} \breve{\omega }_{g}(x) = 1, \breve{\omega }_{g}(x) \geqslant 0,g \in {\mathcal U}_4\triangleq \{1,2,\ldots ,2^{\breve{\chi }}\}. \end{aligned}$$

On the basis of the above analysis, SLMIs (23) can be transformed into LMIs. The proof is complete. \(\square\)

Appendix E

Proof of Theorem 5

Denote \(\vartheta _j(\varrho (x,t))\triangleq \sigma _j(\varrho (x,t_k))-\sigma _j(\varrho (x,t)), t\in [t_k,t_{k+1})\). Note that

$$\begin{aligned}&\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k))\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\\,=\, & {} \sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\{\sigma _j(\varrho (x,t))\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\&+ \vartheta _j(\varrho (x,t))\hat{{\mathcal T}}_{\iota ij}(h_k)\}\nonumber \\\,=\, & {} \sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t))\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\&+\sum _{i=1}^r\sum _{p=1}^r\sigma _i(\varrho (x,t))\vartheta _p(\varrho (x,t))\hat{{\mathcal T}}_{\iota ip}(h_k)\nonumber \\\,=\, & {} \sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t))\{\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\&+\sum _{p=1}^r\vartheta _p(\varrho (x,t))\hat{{\mathcal T}}_{\iota ip}(h_k)\}\nonumber \\\,=\, & {} \sum _{i=1}^r \sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t))\{\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\&+\sum _{p=1}^r\vartheta _p(\varrho (x,t))\frac{\hat{{\mathcal T}}_{\iota ip}(h_k)+\hat{{\mathcal T}}_{\iota jp}(h_k)}{2}\} \end{aligned}$$
(E1)

and from \(\sum _{p=1}^r\vartheta _p(\varrho (x,t))=0\), it is known

$$\begin{aligned}&\sum _{p=1}^r\vartheta _p(\varrho (x,t))\hat{{\mathcal T}}_{\iota ip}(h_k)\nonumber \\&=\sum _{p=1}^r\vartheta _p(\varrho (x,t))\Omega _{\iota ip}(h_k)\nonumber \\&=\sum _{p=1}^{r-1}\vartheta _p(\varrho (x,t))\{\Omega _{\iota ip}(h_k)-\Omega _{\iota ir}(h_k)\} \end{aligned}$$
(E2)

where

$$\begin{aligned} \Omega _{1ip}(h_k)\,=\, & {} \left[ \begin{array}{cccc}\ \Omega _{1ip}^{11} &{}0&{}\Omega _{1ip}^{13}&{}0 \\ {*}&{}0&{}0&{}0\\ {*}&{}{*}&{}0&{}0\\ {*}&{}{*}&{}{*}&{}0\end{array}\right] \nonumber \\ \Omega _{2ip}(h_k)\,=\, & {} \left[ \begin{array}{cccccc}\Omega _{2ip}^{11} &{}0&{}-h_k{\mathcal M}_{ip}&{}~\Omega _{2ip}^{14}&{}0 \\ {*}&{}0&{}0&{}0&{}0\\ {*}&{}{*}&{}0&{}0&{}0\\ {*}&{}{*}&{}{*}&{}0&{}0\\ {*}&{}{*}&{}{*}&{}{*}&{}0\end{array}\right] \nonumber \\ \Omega _{3ip}(h_k)\,=\, & {} \left[ \begin{array}{ccccc}\ \Omega _{3ip}^{11} &{}0&{}0&{}\Omega _{3ip}^{14}&{}0 \\ {*}&{}0&{}0&{}0&{}0\\ {*}&{}{*}&{}0&{}0&{}0\\ {*}&{}{*}&{}{*}&{}0&{}0\\ {*}&{}{*}&{}{*}&{}{*}&{}0\end{array}\right] \nonumber \\ \Omega _{4ip}(h_k)\,=\, & {} \left[ \begin{array}{cccccc}\Omega _{4ip}^{11} &{}0&{}0&{}-h_k{\mathcal M}_{ip}&{}~\Omega _{4ip}^{15}&{}0 \\ {*}&{}0&{}0&{}0&{}0&{}0\\ {*}&{}{*}&{}0&{}0&{}0&{}0\\ {*}&{}{*}&{}{*}&{}0&{}0&{}0\\ {*}&{}{*}&{}{*}&{}{*}&{}0&{}0\\ {*}&{}{*}&{}{*}&{}{*}&{}{*}&{}0\end{array}\right] \nonumber \\ \Omega _{\iota ip}^{11}\,=\, & {} \bar{{\mathcal M}}_{ip}{\mathcal I}_5 +{\mathcal L}G_{1i,v}{\mathcal F}{\bar{K}}_p{\mathcal I}_2\nonumber \\&+{\mathcal I}_5^{\mathrm{T}}\bar{{\mathcal M}}_{ip}^{\mathrm{T}}+{\mathcal I}_2^{\mathrm{T}}{\bar{K}}_p^{\mathrm{T}}{\mathcal F}^{\mathrm{T}}G_{1i,v}^{\mathrm{T}}{\mathcal L}^{\mathrm{T}}\nonumber \\ \Omega _{1ip}^{13}\,=\, & {} \Omega _{2ip}^{14}=[D_m{\mathcal F}{\bar{K}}_p{\bar{W}}{\mathcal I}_2 ~0]^{\mathrm{T}}\nonumber \\ \Omega _{3ip}^{14}\,=\, & {} \Omega _{4ip}^{15}=[D{\mathcal F}{\bar{K}}_p{\bar{W}}{\mathcal I}_2 ~0]^{\mathrm{T}}. \end{aligned}$$
(E3)

Then, one derives

$$\begin{aligned}&\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t_k))\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\\,=\, & {} \sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t))\{\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\&+\sum _{p=1}^{r-1}\vartheta _p(\varrho (x,t)){\tilde{\Omega }}_{\iota ijp}(h_k)\} \end{aligned}$$
(E4)

where \({\tilde{\Omega }}_{\iota ijp}(h_k)=\frac{\Omega _{\iota ip}(h_k)+\Omega _{\iota jp}(h_k)}{2}-\frac{\Omega _{\iota ir}(h_k)+\Omega _{\iota jr}(h_k)}{2}\).

Notice that \(|\vartheta _p(\varrho (x,t))|\le \beta _p,~ p=1,2,...,r-1\), \(|\sum _{p=1}^{r-1}\) \(\vartheta _p(\varrho (x,t))|\) \(=|\vartheta _r(\varrho (x,t))|\le \beta _r\). If the following inequalities hold:

$$\begin{aligned}&\sum _{i=1}^r\sum _{j=1}^r\sigma _i(\varrho (x,t))\sigma _j(\varrho (x,t))\{\hat{{\mathcal T}}_{\iota ij}(h_k)\nonumber \\&~~+\sum _{p=1}^{r-1}{\bar{\vartheta }}_p{\tilde{\Omega }}_{\iota ijp}(h_k)\}<0 \end{aligned}$$
(E5)

for any \(({\bar{\vartheta }}_1,...,{\bar{\vartheta }}_{r-1}) \in {\mathcal U}\triangleq \{{\bar{\vartheta }}_1,...,{\bar{\vartheta }}_{r-1}|{\bar{\vartheta }}_p \in \{-\beta _p,\beta _p\}\}\). Hence, based on Lemma 2, the Theorem 5 can be derived. The proof is complete. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QQ., Wang, ZP., Wu, HN. et al. Mixed \(H_2/H_\infty\) Fault-Tolerant Sampled-Data Fuzzy Control for Nonlinear Parabolic PDE Systems Under Deception Attacks. Int. J. Fuzzy Syst. 24, 3513–3531 (2022). https://doi.org/10.1007/s40815-022-01343-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01343-7

Keywords

Navigation