Skip to main content
Log in

Consensus-Based Estimation for Type-2 Fuzzy Time-Delay Systems Under Deception Attacks and Partial Information Exchange

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses the problem of consensus-based state estimation for interval type-2 Takagi–Sugeno (T–S) fuzzy time-delay systems over a wireless sensor network under deception attacks, partial information exchange and switching sensor-network topologies. The switching-topology-dependent estimators are constructed using interval type-2 fuzzy models considering the cases where the premise variables are available and unavailable. By means of the mode-dependent dwell time approach, sufficient conditions are established such that the estimation error system is exponentially and ultimately bounded. In addition, a fuzzy Lyapunov functional is utilized to derive the existence conditions of estimators for the case that the premise variable are unavailable. Two illustrative examples are provided to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qu, H., Yang, F., Han, Q.-L., Zhang, Y.: Distributed \(H_\infty \)-consensus filtering for attitude tracking using ground-based radars. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2901631

    Article  Google Scholar 

  2. Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for power systems subject to denial-of-service attacks. IEEE Trans. Syst. Man. Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2905253

    Article  Google Scholar 

  3. Zhang, H., Hong, Q., Yan, H., Yang, F., Guo, G.: Event-based distributed \(H_\infty \) filtering networks of 2-DOF quarter-car suspension systems. IEEE Trans. Ind. Inf. 13(1), 312–321 (2017)

    Google Scholar 

  4. Ding, D., Wang, Z., Ho, D.W.C., Wei, G.: Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans. Cybern. 47(8), 1936–1947 (2017)

    Google Scholar 

  5. Xie, L., Choi, D.H., Kar, S., Poor, H.V.: Fully distributed state estimation for wide-area monitoring systems. IEEE Trans. Smart Grid 3(3), 1154–1169 (2012)

    Google Scholar 

  6. Aritra, M.: Distributed observers for LTI systems. IEEE Trans. Autom. Control 63(11), 3689–3704 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Yan, H., Zhang, H., Yang, F., Huang, C., Chen, S.: Distributed \(H_\infty \) filtering for switched repeated scalar nonlinear systems with randomly occurred sensor nonlinearities and asynchronous switching. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2263–2270 (2018)

    Google Scholar 

  8. Su, X.J., Wu, L.G., Shi, P.: Sensor networks with random link failures: distributed filtering for T–S fuzzy systems. IEEE Trans. Ind. Inf. 9(3), 1739–1750 (2013)

    Google Scholar 

  9. Zhang, L.X., Ning, Z.P., Wang, Z.D.: Distributed filtering for fuzzy time-delay systems with packet dropouts and redundant channels. IEEE Trans. Syst. Man. Cybern. Syst. 46(4), 559–572 (2016)

    Google Scholar 

  10. Zhang, D., Yu, L., Zhang, W.-A.: Energy efficient distributed filtering for a class of nonlinear systems in sensor networks. IEEE Sens. J. 15(5), 3026–3036 (2015)

    Google Scholar 

  11. Yan, H.C., Xu, X.L., Zhang, H., Yang, F.W.: Distributed event-triggered \(H_\infty \) state estimation for T–S fuzzy systems over filtering networks. J. Frankl. Inst. 354(9), 3760–3779 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Zhao, Y., Shen, Y.: Distributed event-triggered state estimation and fault detection of nonlinear stochastic systems. J. Frankl. Inst. 356(17), 10335–10354 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Duan, R.R., Li, J.M.: Distributed \(H_\infty \) filter design for T–S fuzzy systems with sigma-delta quantisation via non-PDC scheme. Int. J. Syst. Sci. 50, 694–712 (2019)

    MathSciNet  Google Scholar 

  14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern. 15(1), 116–132 (1985)

    MATH  Google Scholar 

  15. Liu, J., Wu, C., Wang, Z., Wu, L.: Reliable filter design for sensor networks in the type-2 fuzzy framework. IEEE Trans. Ind. Inf. 13(4), 1742–1752 (2017)

    Google Scholar 

  16. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-1. Inf. Sci. 8, 199–249 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Hagras, H., Wagner, C.: Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Comput. Intell. Mag. 7(3), 14–24 (2012)

    Google Scholar 

  18. Tai, K., El-Sayed, A.-R., Biglarbegian, M., Gonzalez, C., Castillo, O., Mahmud, S.: Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 1–19 (2016)

    MathSciNet  Google Scholar 

  19. Bai, Y., Wang, D.: On the comparison of type 1 and interval type 2 fuzzy logic controllers used in a laser tracking system. IFAC Pap. Online 51(11), 1548–1553 (2018)

    Google Scholar 

  20. Lin, C.-M., Yang, M.-S.: Type-2 fuzzy cerebellar model articulation control system design for MIMO uncertain nonlinear systems. Int. J. Mach. Learn. Cybern. (2019). https://doi.org/10.1007/s13042-019-00972-z

    Article  Google Scholar 

  21. Kayacan, E., Khanesar, M.A.: Recurrent interval type-2 fuzzy control of 2-DOF helicopter with finite time training algorithm. IFAC Pap. Online 49(13), 293–299 (2016)

    Google Scholar 

  22. Bencherif, A., Chouireb, F.: A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking. Appl. Intell. 49, 3881–3893 (2019)

    Google Scholar 

  23. Zeghlache, S., Benslimane, T., Amardjia, N., Bouguerra, A.: Interval type-2 fuzzy sliding mode controller based on nonlinear observer for a 3-DOF helicopter with uncertainties. Int. J. Fuzzy Syst. 19(5), 1444–1463 (2017)

    MathSciNet  Google Scholar 

  24. Hamza, M.F., Yap, H.J., Choudhury, I.A., Chiroma, H., Kumbasar, T.: A survey on advancement of hybrid type 2 fuzzy sliding mode control. Neural Comput. Appl. 30(2), 331–353 (2018)

    Google Scholar 

  25. Zhao, T., Chen, Y., Dian, S., Guo, R., Li, S.: General type-2 fuzzy gain scheduling PID controller with application to power-line inspection robots. Int. J. Fuzzy Syst. 22(1), 181–200 (2020)

    Google Scholar 

  26. Chaoui, H., Khayamy, M., Aljarboua, A.A.: Adaptive interval type-2 fuzzy logic control for PMSM drives with a modified reference frame. IEEE Trans. Ind. Electron. 64(5), 3786–3797 (2017)

    Google Scholar 

  27. Li, H., Wu, L., Lam, H.K., Gao, Y.: Analysis and Synthesis for Interval Type-2 Fuzzy-Model-Based Systems. Springer, Berlin (2016)

    MATH  Google Scholar 

  28. Gao, Y., Xiao, F., Liu, J., Wang, R.: Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems with wireless sensor networks. IEEE Trans. Ind. Inf. 15(1), 334–347 (2019)

    Google Scholar 

  29. Chen, Y., Wang, Z., Yuan, Y., Date, P.: Distributed \(H_\infty \) filtering for switched stochastic delayed systems over sensor networks with fading measurements. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2018.2852290

    Article  Google Scholar 

  30. Ding, D., Wang, Z., Han, Q.-L.: A scalable algorithm for event-triggered state estimation with unknown parameters and switching topologies over sensor networks. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2917543

    Article  Google Scholar 

  31. Ma, L., Wang, Z., Liu, Y., Alsaadi, F.E.: Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology. Int. J. Robust Nonlinear Control 29, 2941–2959 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Yang, F., Han, Q.-L., Liu, Y.: Distributed \(H_\infty \) state estimation over a filtering network with time-varying and switching topology and partial information exchange. IEEE Trans. Cybern. 49(3), 870–882 (2019)

    Google Scholar 

  33. Bu, X., Dong, H., Han, F., Li, G.: Event-triggered distributed filtering over sensor networks with deception attacks and partial measurements. Int. J. Gen. Syst. 47(5), 522–534 (2018)

    MathSciNet  Google Scholar 

  34. Ding, D., Wang, Z., Ho, D.W.C., Wei, G.: Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica 78, 231–240 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Han, F., Dong, H., Wang, Z., Li, G.: Local design of distributed \(H_\infty \)-consensus filtering over sensor networks under multiplicative noises and deception attacks. Int. J. Robust Nonlinear Control 29(8), 2296–2314 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Yang, W., Zhang, Y., Chen, G., Yang, C., Shi, L.: Distributed filtering under false data injection attacks. Automatica 102, 34–44 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Guan, Y., Ge, X.: Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks. IEEE Trans. Signal Inf. Process. Netw. 4(1), 48–59 (2018)

    MathSciNet  Google Scholar 

  38. Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/cyb.2019.2900478

    Article  Google Scholar 

  39. Zhao, D., Wang, Z., Wei, G., Han, Q.-L.: A dynamic event-triggered approach to observer-based PID security control subject to deception attacks. Automatica (2020). https://doi.org/10.1016/j.automatica.2020.109128

    Article  MATH  Google Scholar 

  40. Rong, N., Wang, Z.: State-dependent asynchronous intermittent control for IT2 T–S fuzzy interconnected systems under deception attacks. Nonlinear Dyn. 100, 3433–3448 (2020)

    Google Scholar 

  41. Zhang, Z., Niu, Y., Song, J.: Input-to-state stabilization of interval type-2 fuzzy systems subject to cyber attacks: an observer-based adaptive sliding mode approach. IEEE Trans. Fuzzy Syst. 28(1), 190–203 (2020)

    Google Scholar 

  42. Wang, D., Wang, Z., Shen, B., Alsaadi, F.E.: Security-guaranteed filtering for discrete-time stochastic delayed systems with randomly occurring sensor saturations and deception attacks. Int. J. Robust Nonlinear Control 27(7), 1194–1208 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Wang, Z., Wang, D., Shen, B., Alsaadi, F.E.: Centralized security-guaranteed filtering in multirate-sensor fusion under deception attacks. J. Franklin Inst. 355(1), 406–420 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Bezzaoucha Rebaï, S., Voos, H., Darouach, M.: Attack-tolerant control and observer-based trajectory tracking for cyber-physical systems. Eur. J. Control (2018). https://doi.org/10.1016/j.ejcon.2018.09.005

    Article  MATH  Google Scholar 

  45. Hassani, H., Zarei, J., Chadli, M., Qiu, J.: Unknown input observer design for interval type-2 T–S fuzzy systems with immeasurable premise variables. IEEE Trans. Cybern. 47(9), 2639–2650 (2017)

    Google Scholar 

  46. Sheng, L., Ma, X.: Stability analysis and controller design of discrete interval type-2 fuzzy systems. Asian J. Control 16(4), 1091–1104 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, X., Zhang, L., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Automat. Control 57(7), 1809–1815 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Xie, W., Wang, Y.-L., Zhang, J., Fu, M.-Y.: Novel separation principle based \(H_\infty \) observer-controller design for a class of T-S fuzzy systems. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/tfuzz.2018.2814610

    Article  Google Scholar 

  49. Kim, S.H.: Asynchronous dissipative filter design of nonhomogeneous Markovian jump fuzzy systems via relaxation of triple-parameterized matrix inequalities. Inf. Sci. 478, 564–579 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Li, Y., Zhang, H., Zheng, D., Wang, Y.: Asynchronous \(H_\infty \) control of discrete-time switched T–S fuzzy systems with dwell time. Int. J. Fuzzy Syst. 20, 1098–1114 (2018)

    MathSciNet  Google Scholar 

  51. Li, H., Wu, C., Wu, L., Lam, H.-K., Gao, Y.: Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46(3), 668–678 (2016)

    Google Scholar 

  52. Li, H., Gao, Y., Wu, L., Lam, H.K.: Fault detection for T–S fuzzy time-delay systems: delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2015)

    Google Scholar 

  53. Liu, K., Guo, H., Zhang, Q., Xia, Y.: Distributed secure filtering for discrete-time systems under round-robin protocol and deception attacks. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2897366

    Article  Google Scholar 

  54. Cárcamo, C., Vidal, C.: The Chetaev theorem for ordinary difference equations. Proyecciones (Antofagasta) 31(4), 391–402 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant 61973177 and 62073180, and in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 19KJB120011), and in part by the Science and Technology Project of Nantong City (Grant No. JC2019118).

Appendixes

Appendixes

Appendix A: The proof of the instability on the system in Example 1

Let \(V (k) = x_1(k) x_2(k) \) be a function defined on \({\mathcal {D}} = \{(x_1(k), x_2(k)) : x_1(k)>0, x_2(k)>0 \}\). It is clear that \(V (k)>0 \) on \({\mathcal {D}} \) and \(V (k)=0 \) on the boundary of \({\mathcal {D}}\).

The variation of V(k) is given by

$$\begin{aligned} \triangle V (k)= \, & {} V (k+1) -V (k)\nonumber \\= \, & {} x_1(k+1) x_2(k+1)-x_1(k) x_2(k)\nonumber \\= \, & {} (0.17\omega _1(x_1(k)) \nonumber \\&+1.95\omega _2(x_1(k)))x_1^2(k)-0.3x_1(k) x_2(k) \nonumber \\&+(0.01\omega _1(x_1(k))\nonumber \\&+0.05\omega _2(x_1(k)))x_1(k)x_1(k-d(k))\nonumber \\&+0.02x_1(k)x_2(k-d(k)). \end{aligned}$$
(54)

If \(|x_1(k-d(k))|\le |x_1(k)|\) and \(|x_2(k-d(k))|\le |x_2(k)|\), then

$$\begin{aligned} \triangle V (k)\ge & {} (0.16\omega _1(x_1(k)) +1.9\omega _2(x_1(k)))x_1^2(k)\nonumber \\&-0.32x_1(k) x_2(k)\nonumber \\= \, & {} \omega _1(x_1(k))(0.16x_1^2(k)-0.32x_1(k) x_2(k))\nonumber \\&+\omega _2(x_1(k))(1.9x_1^2(k)-0.32x_1(k) x_2(k)) \end{aligned}$$
(55)

where the fact \(\omega _1(x_1(k))+\omega _2(x_1(k))=1\) is applied. Since \(\omega _1(x_1(k))>0\) and \( \omega _2(x_1(k))>0\), \(\triangle V (k) >0\) for all \((x_1(k),x_2(k))\in {\mathcal {D}} \cap {\mathcal {B}}\), where \({\mathcal {B}}= \{(x_1(k), x_2(k)) : x_2(k)<0.5x_1(k), x_1^2(k)+x_2^2(k) ~\text { small} \}\). By Chetaev’s theorem [54], the system in Example 1 is unstable.

Appendix B: The gain matrices of the concerned observers in Example 1

$$\begin{aligned}&{\varvec{L}}_{111}= \left[ \begin{array}{c} -1.1155\\ -0.9924 \end{array} \right] , \ {\varvec{L}}_{211}=\left[ \begin{array}{c} -0.8998\\ -2.5877\end{array} \right] , \\&{\varvec{K}}_{1121}=\left[ \begin{array}{cc} 0.0262 &{} -0.2857\\ 0.5458 &{} -2.8686\end{array} \right] , \ {\varvec{K}}_{2121}=\left[ \begin{array}{cc} 0 &{} 0.3953\\ 0 &{} 0.5976 \end{array} \right] , \\&{\varvec{L}}_{121}=\left[ \begin{array}{c} -0.1385\\ -0.5709\end{array} \right] , \ {\varvec{L}}_{221}=\left[ \begin{array}{c} -0.4586\\ -1.5231\end{array} \right] , \\&{\varvec{K}}_{1211}=\left[ \begin{array}{c} 0.5411\\ -0.0117 \end{array} \right] , \ {\varvec{K}}_{2211}=\left[ \begin{array}{c} 0.\\ 0.1929\end{array} \right] , \\&{\varvec{K}}_{1231}=\left[ \begin{array}{c} 0.4335\\ 0.3825\end{array} \right] , \ {\varvec{K}}_{2231}=\left[ \begin{array}{c} 1.5058\\ 1.6308\end{array} \right] , \\&{\varvec{L}}_{131}=\left[ \begin{array}{c} -0.8630\\ -1.2539\end{array} \right] , \ {\varvec{L}}_{231}=\left[ \begin{array}{c} -0.5349\\ -2.7045\end{array} \right] , \\&{\varvec{K}}_{1321}=\left[ \begin{array}{cc} 0.0328 &{} 1.0634\\ 0.4605 &{} -0.5131 \end{array} \right] , \ {\varvec{K}}_{2321}=\left[ \begin{array}{cc} 0 &{} 1.5057\\ 0 &{} 2.0479\end{array} \right] , \\&{\varvec{L}}_{112}=\left[ \begin{array}{c} -0.9615\\ -0.8433\end{array} \right] , \ {\varvec{L}}_{212}=\left[ \begin{array}{c} -0.8556\\ -2.5370\end{array} \right] , \\&{\varvec{K}}_{1122}=\left[ \begin{array}{cc} -0.0385 &{} -0.0041\\ -0.6816 &{} 0.5078\end{array} \right] , \ {\varvec{K}}_{2122}=\left[ \begin{array}{cc} 0.0867 &{} 0.0254\\ -0.0644 &{} 0.5640\end{array} \right] , \\&{\varvec{K}}_{1132}=\left[ \begin{array}{c} 0.0093\\ -0.3521\end{array} \right] , \ {\varvec{K}}_{2132}=\left[ \begin{array}{c} 0.1365\\ -0.0506\end{array} \right] , \\&{\varvec{L}}_{122}=\left[ \begin{array}{c} -0.0974\\ -0.4552\end{array} \right] , \ {\varvec{L}}_{222}=\left[ \begin{array}{c} -0.3083\\ -1.3159\end{array} \right] , \\&{\varvec{K}}_{1212}=\left[ \begin{array}{c} 1.5365\\ 0.2145\end{array} \right] , \ {\varvec{K}}_{2212}=\left[ \begin{array}{c} 1.3554\\ 2.8348\end{array} \right] , \\&{\varvec{L}}_{132}=\left[ \begin{array}{c} -0.7028\\ -0.5624\end{array} \right] , \ {\varvec{L}}_{232}=\left[ \begin{array}{c} -0.8756\\ -2.6001\end{array} \right] , \\&{\varvec{K}}_{1312}=\left[ \begin{array}{cc} 1.1272 &{} 0.0059\\ -0.6880 &{} 0.3596 \end{array} \right] , \ {\varvec{K}}_{2312}=\left[ \begin{array}{cc} 1.0195 &{} 0.0091\\ 0.7218 &{} 0.3564\end{array} \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, S., Zhang, X., Lu, Y. et al. Consensus-Based Estimation for Type-2 Fuzzy Time-Delay Systems Under Deception Attacks and Partial Information Exchange. Int. J. Fuzzy Syst. 23, 1462–1477 (2021). https://doi.org/10.1007/s40815-020-01040-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01040-3

Keywords

Navigation