Skip to main content
Log in

A Parallel Fuzzy Algorithm for Real-Time Medical Image Enhancement

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Medical images may be corrupted by noise. This noise affects the image quality and can obscure important information required for accurate diagnosis. Effectively apply filtering techniques can facilitate diagnosis or reduce radiation exposure. In this paper, we introduce a parallel method designed to reduce mixed Gaussian-impulse noise from digital images. The method uses fuzzy logic and the fuzzy peer group concept. Implementations of the method on multi-core interface using the open multi-processing (OpenMP) and on graphics processing units (GPUs) using CUDA are presented. Efficiency is measured in terms of execution time and in terms of MAE, PSNR and SSIM over medical images from the mini-MIAS database and over computed radiography (CR) images generated at different exposure levels. These images have been contaminated with impulsive and/or Gaussian noise. Experiments show that the proposed method obtains good performance in terms of the above mentioned objective quality measures. After applying multi-core and GPUs optimization strategies, the observed time shows that the new filter allows to remove mixed Gaussian-impulse noise in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)

    Article  Google Scholar 

  2. Boncelet, C.: Image noise models, pp. 325–335. Academic Press, London (2000)

    Google Scholar 

  3. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. J. Vis. Commun. Image Represent. 19(1), 20–29 (2008)

    Article  Google Scholar 

  4. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Some improvements for image filtering using peer group techniques. Image Vis. Comput. 28(1), 188–201 (2010)

    Article  Google Scholar 

  5. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognit. Lett. 31(13), 1842–1849 (2010)

    Article  Google Scholar 

  6. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: A simple fuzzy method to remove mixed gaussian-impulsive noise from color images. IEEE Trans. Fuzzy Syst. 21(5), 971–978 (2013)

    Article  Google Scholar 

  7. Chen, Y., Li, K., Yang, W., Xiao, G., Xie, X., Li, T.: Performance-aware model for sparse matrix-matrix multiplication on the sunway taihulight supercomputer. IEEE Trans. Parallel Distrib. Syst. 30(4), 923–938 (2018)

    Article  Google Scholar 

  8. CUDA Home Page.: https://developer.nvidia.com/cuda-zone (2018). Accessed 12 Dec 2018

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. Trans. Image Proc. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In: Proceedings of the International Conference on Image Processing, ICIP 2007, September 16–19, 2007, San Antonio, Texas, USA, pp. 313–316. IEEE (2007)

  11. Dagum, L., Menon, R.: Openmp: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

    Article  Google Scholar 

  12. George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64(3), 395–399 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144(3), 411–420 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalra, M.K., Maher, M.M., Blake, M.A., Lucey, B.C., Karau, K., Toth, T.L., Avinash, G., Halpern, E.F., Saini, S.: Detection and characterization of lesions on low-radiation-dose abdominal ct images postprocessed with noise reduction filters. Radiology 232(3), 791–797 (2004)

    Article  Google Scholar 

  15. Kalra, M.K., Wittram, C., Maher, M.M., Sharma, A., Avinash, G.B., Karau, K., Toth, T.L., Halpern, E., Saini, S., Shepard, J.A.: Can noise reduction filters improve low-radiation-dose chest ct images pilot study. Radiology 228(1), 257–264 (2003)

    Article  Google Scholar 

  16. Keeling, S.L.: Total variation based convex filters for medical imaging. Appl. Math. Comput. 139(1), 101–119 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer group image enhancement. IEEE Trans. Image Process. 10(2), 326–334 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, K., Liu, C., Li, K., Zomaya, A.Y.: A framework of price bidding configurations for resource usage in cloud computing. IEEE Trans. Parallel Distrib. Syst. 27(8), 2168–2181 (2016)

    Article  Google Scholar 

  19. Li, X.: On modeling interchannel dependency for color image denoising. Int. J. Imaging Syst. Technol. 17(3), 163–173 (2007)

    Article  Google Scholar 

  20. Liu, C., Li, K., Xu, C., Li, K.: Strategy configurations of multiple users competition for cloud service reservation. IEEE Trans. Parallel Distrib. Syst. 27(2), 508–520 (2016)

    Article  Google Scholar 

  21. Melange, T., Nachtegael, M., Kerre, E.E.: Fuzzy random impulse noise removal from color image sequences. IEEE Trans. Image Process. 20(4), 959–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morillas, S., Gregori, V., Hervás, A.: Fuzzy peer groups for reducing mixed gaussian-impulse noise from color images. IEEE Trans. Image Process. 18(7), 1452–1466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morillas, S., Gregori, V., Peris-Fajarnés, G.: Isolating impulsive noise pixels in color images by peer group techniques. Comput. Vis. Image Underst. 110(1), 102–116 (2008)

    Article  Google Scholar 

  24. Morillas, S., Gregori, V., Peris-Fajarnés, G., Sapena, A.: Local self-adaptive fuzzy filter for impulsive noise removal in color images. Signal Process. 88(2), 390–398 (2008)

    Article  MATH  Google Scholar 

  25. OpenMP ARB.: https://www.openmp.org (2018). Accessed 12 Dec 2018

  26. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  27. Plataniotis, K.N., Venetsanopoulos, A.N.: Color image processing and applications. Springer, New York (2000)

    Book  Google Scholar 

  28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schulte, S., Huysmans, B., Pižurica, A., Kerre, E.E., Philips, W.: A new fuzzy-based wavelet shrinkage image denoising technique. In: Proceedings of the 8th international conference on Advanced Concepts For Intelligent Vision Systems, ACIVS’06, pp. 12–23. Springer-Verlag, Berlin, Heidelberg (2006)

  30. Schulte, S., Morillas, S., Gregori, V., Kerre, E.E.: A new fuzzy color correlated impulse noise reduction method. IEEE Trans. Image Process. 16(10), 2565–2575 (2007)

    Article  MathSciNet  Google Scholar 

  31. Schulte, S., Nachtegael, M., Witte, V.D., der Weken, D.V., Kerre, E.E.: A fuzzy impulse noise detection and reduction method. IEEE Trans. Image Process. 15(5), 1153–1162 (2006)

    Article  Google Scholar 

  32. Schulte, S., Witte, V.D., Nachtegael, M., der Weken, D.V., Kerre, E.E.: Fuzzy two-step filter for impulse noise reduction from color images. IEEE Trans. Image Process. 15(11), 3567–3578 (2006)

    Article  Google Scholar 

  33. Schulte, S., Witte, V.D., Nachtegael, M., der Weken, D.V., Kerre, E.E.: Fuzzy random impulse noise reduction method. Fuzzy Sets Syst. 158(3), 270–283 (2007)

    Article  MathSciNet  Google Scholar 

  34. Smolka, B.: Peer group switching filter for impulse noise reduction in color images. Pattern Recognit. Lett. 31(6), 484–495 (2010)

    Article  Google Scholar 

  35. Smolka, B., Chydzinski, A.: Fast detection and impulsive noise removal in color images. Real-Time Imaging 11(5–6), 389–402 (2005)

    Article  Google Scholar 

  36. Smolka, B., Kusnik, D.: Robust local similarity filter for the reduction of mixed gaussian and impulsive noise in color digital images. Signal Image Video Process. 9(1), 49–56 (2015)

    Article  Google Scholar 

  37. Suckling, J., et al.: The mammographic image analysis society digital mammogram database. Exerpta Med. Int. Congr. Ser. 1069, 375–378 (1994)

    Google Scholar 

  38. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision, ICCV ’98, pp. 839–846. IEEE Computer Society, Washington, DC, USA (1998)

  39. Toprak, A., Güler, I.: Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter. Digit. Signal Process. 17(4), 711–723 (2007)

    Article  Google Scholar 

  40. Wang, Y., Ren, W., Wang, H.: Anisotropic second and fourth order diffusion models based on convolutional virtual electric field for image denoising. Comput. Math. Appl. 66(10), 1729–1742 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  42. Wong, K.K., Fong, S., Wang, D.: Impact of advanced parallel or cloud computing technologies for image guided diagnosis and therapy. J. Xray. Sci. Technol. 25(2), 187–192 (2017)

    Google Scholar 

  43. Xiao, G., Li, K., Li, K.: Reporting l most favorite objects in uncertain databases with probabilistic reverse top-k queries. In: Data Mining Workshop (ICDMW), 2015 IEEE International Conference on, pp. 1592–1599. IEEE (2015)

  44. Xiao, G., Li, K., Li, K.: Reporting l most influential objects in uncertain databases based on probabilistic reverse top-k queries. Inf. Sci. 405, 207–226 (2017)

    Article  Google Scholar 

  45. Xiao, G., Li, K., Li, K., Zhou, X.: Efficient top-(k, l) range query processing for uncertain data based on multicore architectures. Distrib. Parallel Datab. 33(3), 381–413 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for their comments and suggestions which helped to improve the quality of the paper significantly.

Funding

This research was supported by the Spanish Ministry of Science, Innovation and Universities (Grant RTI2018-098156-B-C54) co-financed by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Arnal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnal, J., Chillarón, M., Parcero, E. et al. A Parallel Fuzzy Algorithm for Real-Time Medical Image Enhancement. Int. J. Fuzzy Syst. 22, 2599–2612 (2020). https://doi.org/10.1007/s40815-020-00953-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00953-3

Keywords

Navigation