Skip to main content
Log in

Fuzzy Model Predictive Control: Complexity Reduction for Implementation in Industrial Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a new fuzzy logic-based control-design technique is presented. The method aims at reducing the complexity of Takagi-Sugeno Fuzzy systems via the reduction of fuzzy rules. This reduction is obtained by finding a function basis via the Functional Principal Component Analysis, and then the model is used for Model Predictive Control (MPC). This procedure is systematic, and eventually leads to feasible low-cost microcontroller-based implementations, which has become a generic need in the era of IoT. In order to validate the results, two experimental setups have been controlled using these principles. The first of these, a mechanical pendulum, presents nonlinear dynamics that suggests the use of linear discrete models at specific operating points. In the second, a pilot plant implementing an industrial process with a chemical reactor and a heat exchanger, presents nonlinear multivariate dynamics that are successfully handled with the Fuzzy MPC Controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

N :

Dimension of the original space

R :

Dimension of the new reduced subspace

\({\varvec{C}}\) :

\(\{c_{il}\},\; i = 1,\ldots,n; l = 1,\ldots,L\), with \(c_{il}\in {\mathbb {R}}\)

\(\bar{{\varvec{C}}}\) :

\(\{\bar{c_{i}}\},\; i = 1,\ldots,n\), with \(\bar{c_{i}}=\displaystyle \frac{\sum _{l=1}^{L}c_{il}}{L}\)

\(\varGamma\) :

\(\{\gamma _{ij}\}, i = 1,ldots,n; j = 1,ldots,N\), with \(\gamma _{ij}\in {\mathbb {R}}\)

\(\lambda _{i}\) :

Eigenvalues

v :

Variability index \(\in [0,1]\)

\(h_{j}({\varvec{x}})\) :

Consequent functions

\(\alpha _{j}({\varvec{x}})=\displaystyle \frac{{\bar{\mu }}_{j}({\varvec{x}}) }{\sum _{j=1}^{N}{\bar{\mu }}_{j}({\varvec{x}})}\) :

Antecedent functions

\(\theta ({\varvec{x}}),\xi ({\varvec{x}}), \delta _{i}(x)\) :

Functions \(\in L^{2}[0,X]\)

References

  1. Camacho, E.F., Bordons, C.: Model predictive control, ser. advanced textbooks in control and signal processing. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Cutler, C., Ramaker, B.: Dynamic matrix control: a computer control algorithm. In: The National Meeting of The American Institute of Chemnical Engineers. Houston, TX, USA (1979)

  3. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng Pract 11(7), 733–764 (2003)

    Article  Google Scholar 

  4. Clarke, D., Mohtadi, C., Tuffs, P.: Generalized predictive control; part 1. the basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  MATH  Google Scholar 

  5. Grüne, L., Pannek, J.: Nonlinear model predictive control: theory and algorithms. Springer-Verlag, Berlin (2011)

    Book  MATH  Google Scholar 

  6. Badgwell, T.A., Qin, S.J.: Review of nonlinear model predictive control applications. In: Non-linear predictive control: theory and practice, ser. control, robotics & sensors. Institution of Engineering and Technology, pp. 3–32 (2001)

  7. Hertneck, M., Köhler, J., Trimpe, S., Allgöwer, F.: Learning an approximate model predictive controller with guarantees. IEEE Control Syst Lett 2, 543–548 (2018)

    Article  Google Scholar 

  8. Nakamori, Y., Suzuki, K., Yamanaka, T.: Model predictive control using fuzzy dynamic models, pp. 497–506. Springer, Netherlands (1993)

    Google Scholar 

  9. Potocnik, B., Music, G., Zupancic, B.: Model predictive control systems with discrete inputs. In: Proceedings of the 12th IEEE mediterranean electrotechnical conference, MELECON, vol. 1, pp. 383–386 (2004)

  10. Karer, G., Mušič, G., Škrjanc, I., Zupančič, B.: Hybrid fuzzy model-based predictive control of temperature in a batch reactor. Comput Chem Eng 31(12), 1552–1564 (2007)

    Article  MATH  Google Scholar 

  11. Núñez, A., Sáez, D., Oblak, S., Škrjanc, I.: Fuzzy-model-based hybrid predictive control. ISA Trans 48(1), 24–31 (2009)

    Article  Google Scholar 

  12. Babuška, R., Sousa, J.M., Verbruggen, H.B.: Predictive control of nonlinear systems based on fuzzy and neural models. In: European control conference (ECC), pp. 3868–3873 (1999)

  13. Marusak, P., Tatjewski, P.: Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. Arch Control Sci 12(3), 267–288 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Huang, Y.L., Lou, H.H., Gong, J.P., Edgar, T.F.: Fuzzy model predictive control. IEEE Trans Fuzzy Syst 8(6), 665–678 (2000)

    Article  Google Scholar 

  15. Valente de Oliveira, J., Lemos, J.M.: A comparison of some adaptive-predictive fuzzy-control strategies. IEEE Trans Syst Man Cybern Part C 30(1), 138–145 (2000)

    Article  Google Scholar 

  16. Wang, M., Paulson, J.A., Yan, H., et al.: An adaptive model predictive control strategy for nonlinear distributed parameter systems using the type-2 Takagi-Sugeno model. Int J Fuzzy Syst 18, 792 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hou, G., Gong, L., Dai, X., Wang, M., Huang, C.: A novel fuzzy model predictive control of a gas turbine in the combined cycle unit. Complexity 2018(6468517), 18 (2018)

    Google Scholar 

  18. Mollov, S., Babuska, R., Abonyi, J., Verbruggen, H.B.: Effective optimization for fuzzy model predictive control. IEEE Trans Fuzzy Syst 12(5), 661–675 (2004)

    Article  Google Scholar 

  19. Lu, C.-H., Tsai, C.-C.: Generalized predictive control using recurrent fuzzy neural networks for industrial processes. J Process Control 17(1), 83–92 (2007)

    Article  Google Scholar 

  20. Escaño, J.M., Bordons, C., Vilas, C., García, M.R., Alonso, A.A.: Neurofuzzy model based predictive control for thermal batch processes. J Process Control 19(9), 1566–1575 (2009)

    Article  Google Scholar 

  21. Zhang, J., Morris, A.J.: Long range predictive control of nonlinear processes based on recurrent neuro-fuzzy network models. Neural Comput Appl 9(1), 50–59 (2000)

    Article  Google Scholar 

  22. Espinosa, J.J., Hadjili, M., Wertz, V., Vandewalle, J.: Predictive control using fuzzy models—comparative study. In: Proc. European Control Conference, (1998)

  23. Townsend, S., Irwin, G.W.: Nonlinear model based predictive control using multiple local models. In: Kouvaritakis, B., Cannon, M. (eds.) Non-linear predictive control: theory and practice, IET Control Engineering series, pp. 223–244, (2001)

  24. Soto, J., Castillo, I., Gauthier, A.: Identificación y control de sistemas no lineales mediante clustering y gpc usando modelos difusos takagi-sugeno. Revista de Ingeniería 19, 150–157 (2004)

    Google Scholar 

  25. Jamshidi, M.: Large scale systems modelling and control, ser. North Holland series in system science and engineering. Elsevier North-Holland Inc., Amsterdam (1983)

    Google Scholar 

  26. Ramos, J.V., Pereira, C., Dourado, A.: Building interpretable systems in real time, pp. 127–150. Wiley, New York (2010)

    Google Scholar 

  27. Lughofer, E., Bouchot, J.-L., Shaker, A.: On-line elimination of local redundancies in evolving fuzzy systems. Evol Syst 2(3), 165–187 (2011)

    Article  Google Scholar 

  28. Gegov, A.: Complexity management in fuzzy systems–a rule base compression approach, ser. studies in fuzziness and soft computing, vol. 211. Springer, Berlin (2007)

    MATH  Google Scholar 

  29. Combs, W.E., Andrews, J.E.: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans Fuzzy Syst 6(1), 1–11 (1998)

    Article  Google Scholar 

  30. Yen, J., Wang, L.: Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Trans Syst Man Cybern B Cybern 29(1), 13–24 (1999)

    Article  MathSciNet  Google Scholar 

  31. Yam, Y.: Fuzzy approximation via grid point sampling and singular value decomposition. IEEE Trans Syst Man Cybern B Cybern 27(6), 933–951 (1997)

    Article  MathSciNet  Google Scholar 

  32. Baranyi, P., Yam, Y.: Singular value-based approximation with Takagi-Sugeno type fuzzy rule base. In: Proceedings of the sixth IEEE international conference on fuzzy systems, vol. 1, pp. 265–270 (1997)

  33. Ciftcioglu, O.: Studies on the complexity reduction with orthogonal transformation. In: Proceedings of the 2002 IEEE international conference on fuzzy systems, (FUZZ-IEEE’02), vol. 2, pp. 1476 –1481 (2002)

  34. Takacs, O., Varkonyi-Koczy, A.R.: SVD-based complexity reduction of rule-bases with nonlinear antecedent fuzzy sets. IEEE Trans Instrum Meas 51(2), 217–221 (2002)

    Article  Google Scholar 

  35. Escaño, J.M., Bordons, C.: Complexity reduction in fuzzy systems using functional principal component analysis. In: Matía, F., Marichal, G., Jiménez, E. (eds.) Fuzzy modeling and control: theory and applications. Atlantis Computational Intelligence Systems. Atlantis Press, Paris (2014). https://doi.org/10.2991/978-94-6239-082-9_3

    Google Scholar 

  36. Deshpande, P.B.: Multivariable process control. Instrument Society of America, Research Triangle Park (1989)

    Google Scholar 

  37. Dunia, R., Qin, S.J.: Joint diagnosis of process and sensor faults using principal component analysis. Control Eng Pract 6(4), 457–469 (1998)

    Article  Google Scholar 

  38. Palma, L.B., Coito, F.V., Gil, P.S., Neves-Silva, R.: Process control based on PCA models. In: IEEE 15th conference on emerging technologies factory automation (ETFA), pp. 1–4 (2010)

  39. Yao, J., Liu, X., Zhu, X.: Reduced dimension control based on online recursive principal component analysis. In: American Control Conference, 2009. ACC ’09., pp. 5713–5718 (2009)

  40. Ocaña, F.A., Aguilera, A.M., Escabias, M.: Computational considerations in functional principal component analysis. Comput Stat 22, 449–465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wazwaz, Abdul-Majid: A first course in integral equations. World Scientific, Singapore (2015)

    Book  MATH  Google Scholar 

  42. Deville, J.: Méthodes statistiques et numériques de l’analyse harmonique. Annales de l’inséé (15), 3, 5–101 (1974)

  43. Jang, J.: Anfis: adaptive-network-based fuzzy inference system. IEEE Tran Syst Man Cybern 23(3), 665–685 (1993)

    Article  Google Scholar 

  44. Ramírez, D.R., Gruber, J.K., Álamo, T., Bordóns, C., Camacho, E.F.: Control predictivo mín–máx de una planta piloto (min–max predictive control of a pilot plant). Revista Iberoamericana de Automática e Informática Industrial 5(3), 37–47 (2008)

    Article  Google Scholar 

  45. Chiu, S.: Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2, 267–278 (1994)

    Google Scholar 

  46. Fuzzy Logic Toolbox User’s Guide. The MathWorks, Inc., (2017)

Download references

Acknowledgements

The authors would like to acknowledge the VI Plan of Research and Transfer of the University of Seville (VI PPIT-US) for funding this work and also the Ministry of Economy and Competitiveness of Spain for the financial support under Grants DPI2016-78338-R and DPI2016-75294-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Escaño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escaño, J.M., Bordons, C., Witheephanich, K. et al. Fuzzy Model Predictive Control: Complexity Reduction for Implementation in Industrial Systems. Int. J. Fuzzy Syst. 21, 2008–2020 (2019). https://doi.org/10.1007/s40815-019-00693-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00693-z

Keywords

Navigation