Skip to main content
Log in

An Adaptive Model Predictive Control Strategy for Nonlinear Distributed Parameter Systems using the Type-2 Takagi–Sugeno Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive model predictive control (MPC) strategy for nonlinear distributed parameter systems (DPSs) based on the online-tuning interval Type-2 Takagi-Sugeno (IT2 T–S) model. First, the infinite dimension DPS is approximated in a finite dimensional space via the finite difference method, and from this model, training data are generated. Principal component analysis is then used to project the finite, but still high, dimensional spatiotemporal training data into a low-dimensional time series using spatial basis functions. Next, an online-tuning IT2 T–S fuzzy model is proposed to predict the low-dimensional time series with a high accuracy by computing an optimal time-varying weight parameter. Furthermore, a new method for simplifying controller design is presented by transforming the control objective from the high-dimensional spatial outputs reaching their set points to the lower dimensional time outputs reaching their set points. These novel contributions increase the accuracy of the prediction model (thus improving control performance) and reduce the computational cost of the underlying MPC optimization. Lastly, simulations are presented on a typical DPS to demonstrate the accuracy and effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Clarke, D.W., Mohtadi, C., Tuffs, P.: Generalized predictive control part i. The basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  MATH  Google Scholar 

  2. Li, N., Li, S.Y., Xi, Y.G.: Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study. Inf. Sci. 165(3–4), 247–263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christofides, P.D.: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  4. Christofides, P.D., Baker, J.: Robust output feedback control of quasilinear parabolic PDE systems. Syst. Control Lett. 36, 307–316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Armaou, A., Christofides, P.D.: Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chem. Eng. Sci. 57(24), 5083–5114 (2002)

    Article  Google Scholar 

  6. Aggelogiannaki, E., Sarimveis, H.: Robust nonlinear control of hyperbolic distributed parameter systems. Control Eng. Pract. 17(6), 723–732 (2009)

    Article  Google Scholar 

  7. Dubljevic, S., Christofides, P.: Predictive control of parabolic PDEs with boundary control actuation. Chem. Eng. Sci. 61, 6239–6248 (2006)

    Article  Google Scholar 

  8. Deng, H., Li, H.X., Chen, G.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Trans. Control Syst. Technol. 13(5), 686–700 (2005)

    Article  Google Scholar 

  9. Gay, D.H., Ray, W.H.: Identification and control of distributed parameter systems by means of the singular value decomposition. Chem. Eng. Sci. 50(10), 1519–1539 (1995)

    Article  Google Scholar 

  10. Zheng, D., Hoo, K.A.: System identification and model-based control for distributed parameter systems. Comput. Chem. Eng. 28, 1361–1375 (2004)

    Article  Google Scholar 

  11. Zheng, D., Hoo, K.A., Piovoso, M.J.: Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Love expansion. Ind. Eng. Chem. Res. 41(6), 1545–1556 (2002)

    Article  Google Scholar 

  12. Li, N., Hua, C., Wang, H.F., Li, S.Y., Ge, S.Z.: TimeCSpace decomposition-based generalized predictive control of a transport-reaction process. Ind. Eng. Chem. Res. 50(20), 11628–11635 (2011)

    Article  Google Scholar 

  13. Qi, C.K., Li, H.X., Zhang, X.X., Zhao, X.C., Li, S.Y., Gao, F.: Time/space-separation-based SVM modeling for nonlinear distributed parameter processes. Ind. Eng. Chem. Res. 50, 332–341 (2011)

    Article  Google Scholar 

  14. Aggelogiannaki, E., Sarimveis, H.: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Comput. Chem. Eng. 32(6), 1225–1237 (2008)

    Article  Google Scholar 

  15. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177(1), 84–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mendez, G.M., Castillo, O.: Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm.In: Proceedings IEEE International Conference on Fuzzy Systems, pp. 230–235 (2005)

  17. Liang, Y.W., Chen, C.C., Xu, S.S.D.: tudy of reliable design using T-S fuzzy modeling and integral sliding mode control schemes. Int. J. Fuzzy Syst. 15(2), 233–243 (2013)

    MathSciNet  Google Scholar 

  18. Ougli, A.E., Tidhaf, B.: Optimal type-2 fuzzy adaptive control for a class of uncertain nonlinear systems using an LMI approach. Int. J. Innov. Comput. Inf. Control 11(3), 851–863 (2015)

    Google Scholar 

  19. Wang, W.Y., Chien, Y.H., Avo, I.H.L.: An on-line robust and adaptive T-S fuzzy-neural controller for more general unknown systems. Int. J. Fuzzy Syst. 10(1), 33–43 (2008)

    MathSciNet  Google Scholar 

  20. Li, H.Y., Pan, Y.N., Zhou, Q.: Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame, IEEE Trans. Fuzzy Syst. (2014)

  21. Li, F., Shi, P., Wu, L., Zhang, X.: Fuzzy-model-based D-stability and non-fragile control for discrete-time descriptor systems with multiple delays. IEEE Trans. Fuzzy Syst. 22(4), 1019–1025 (2014)

    Article  Google Scholar 

  22. Shi, P., Zhang, Y., Chadli, M., Agarwal, R.K.: Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2425962

  23. Derakhshan, S.F., Fatehi, A.: Non-monotonic lyapunov functions for stability analysis and stabilization of discrete time Takagi-Sugeno fuzzy systems. Int. J. Innov. Comput. Inf. Control 10(4), 1567–1586 (2014)

    Google Scholar 

  24. Juang, C.F., Tsao, Y.W.: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans. Fuzzy Syst. 16(6), 1411–1424 (2008)

    Article  Google Scholar 

  25. Abiyev, R.H., Kaynak, O.: Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans. Ind. Electron. 57(12), 4147–4159 (2010)

    Article  Google Scholar 

  26. Wang, Y., Rong, G., Wang, S.Q.: Hybrid fuzzy modeling of chemical processes. Fuzzy Sets Syst. 130, 265–275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chuang, C.C., Jeng, J.T., Tao, C.W.: Hybrid robust approach for TSK fuzzy modeling with outliers. Expert Syst. Appl. 36, 8925–8931 (2009)

    Article  Google Scholar 

  28. Choi, B.I., Rhee, F.C.H.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 61203059, No. 61272064, and No. 61374140), the Fundamental Research Funds for the Central Universities (No. 22A201514048), and the Open Research fund for Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Paulson, J.A., Yan, H. et al. An Adaptive Model Predictive Control Strategy for Nonlinear Distributed Parameter Systems using the Type-2 Takagi–Sugeno Model. Int. J. Fuzzy Syst. 18, 792–805 (2016). https://doi.org/10.1007/s40815-015-0115-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0115-3

Keywords

Navigation