Skip to main content
Log in

Dead-Zone Model-Based Adaptive Fuzzy Wavelet Control for Nonlinear Systems Including Input Saturation and Dynamic Uncertainties

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this study, the problem of adaptive fuzzy wavelet network (FWN) control is investigated for nonlinear strict-feedback systems with unknown functions, unknown virtual control gains and unknown input saturation. An adaptive FWN as an adaptive nonlinear-in-parameter approximator is proposed to represent the model of the unknown functions. Saturation nonlinearity is described by the dead-zone operator-based model which does not require the bound of the saturated input to be known. Then, a novel control scheme is designed based on the adaptive FWN, the saturation model and the dynamic surface control approach. The proposed control scheme does not require any prior knowledge about input saturation, unknown dynamics and unknown virtual control gains. It simultaneously eliminates the “explosion of complexity” and “curse of dimensionality” problems; also, the design approach avoids the controller singularity problem completely without using projection algorithm. The stability analysis is studied using Lyapunov theorem; it shows that all signals of the resulting closed-loop system are uniformly ultimately bounded and the tracking error can be made small by proper selection of the design parameters. Comparing the simulation results of the proposed scheme with other control methods demonstrates the effectiveness and superior performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jang, J.O.: Neuro-fuzzy networks saturation compensation of DC motor systems. Mechatronics 19, 529–534 (2009)

    Article  Google Scholar 

  2. Yu, C., Xiang, X., Zhang, Q., Xu, G.: Adaptive fuzzy trajectory tracking control for an under-actuated autonomous underwater vehicle subject to actuator saturation. Int. J. Fuzzy Syst. (2007). https://doi.org/10.1007/s40815-017-0396-9

    Article  Google Scholar 

  3. Chu, Z., Xiang, X., Zhu, D., Luo, C., Xie, D.: Adaptive sliding mode driving control for autonomous underwater vehicle with input saturation. Int. J. Fuzzy Syst. (2017). https://doi.org/10.1007/s40815-017-0390-2

    Article  Google Scholar 

  4. Li, S., Wang, Y., Tan, J.: Adaptive and robust control of quadrator aircrafts with input saturation. Nonlinear Dyn. 89, 225–265 (2017)

    Article  Google Scholar 

  5. Song, Z., Li, H., Sun, K.: Adaptive dynamic surface control for MEMS triaxial gyroscope with nonlinear inputs. Nonlinear Dyn. 78, 173–182 (2014)

    Article  Google Scholar 

  6. Perez-Arancibia, N.O., Tsao, T.-C., Gibson, J.S.: Saturation-induced instability and its avoidance in adaptive control of hard disk drives. IEEE Trans. Control Syst. Technol. 18, 368–382 (2010)

    Article  Google Scholar 

  7. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. 46, 334–344 (2006)

    Article  Google Scholar 

  8. Lu, K., Xia, Y., Yu, C., et al.: Finite-time tracking control of rigid spacecraft under actuator saturations and faults. IEEE Trans. Autom. Sci. Eng. 13, 368–381 (2016)

    Article  Google Scholar 

  9. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  10. Yang, J., Tong, S.: Observer-based output-feedback control design for a class of nonlinear switched T–S fuzzy systems with actuator saturation and time delay. Int. J. Fuzzy Systs. 19, 1333–1343 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gassara, H., Hajjaji, A.-E., Chaabane, M.: Control of time delay polynomial fuzzy model subject to actuator saturation. Int. J. Fuzzy Syst. 18, 763–772 (2016)

    Article  MathSciNet  Google Scholar 

  12. Rang, M., Wang, Q., Dong, C.: Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control. Automatica 63, 302–310 (2016)

    Article  MathSciNet  Google Scholar 

  13. Zhao, F., Ge, S.S., Tu, F., et al.: Adaptive neural network control for active suspension system with actuator saturation. IET Control Theory Appl. 10, 1696–1705 (2016)

    Article  MathSciNet  Google Scholar 

  14. Adetola, V., Adn, D.D., Guay, M.: Adaptive model predictive control for constrained nonlinear systems. Syst. Control Lett. 58, 320–326 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hu, Q., Ma, G., Xie, L.: Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica 44, 552–559 (2008)

    Article  MathSciNet  Google Scholar 

  16. Shieh, C.S.: Design of three-dimensional missile guidance law with tunable nonlinear H control with saturation constraint. IET Control Theory Appl. 3, 756–763 (2007)

    Article  Google Scholar 

  17. Moreno, J.C., Guzmán, J.L., Baños, A., et al.: The input amplitude saturation problem in QFT: a survey. Annu. Rev. Control 35, 34–55 (2011)

    Article  Google Scholar 

  18. Wen, C., Zhou, J., Liu, Z., et al.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56, 1672–1678 (2011)

    Article  MathSciNet  Google Scholar 

  19. Peng, Z., Wen, G., Yang, S., Rahmani, A.: Distributed consensus-based formation control for non holonomic wheeled mobile robots using adaptive neural networks. Nonlinear Dyn. 86, 605–622 (2016)

    Article  Google Scholar 

  20. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica. 47, 452–465 (2011)

    Article  MathSciNet  Google Scholar 

  21. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict feedback form. IEEE Trans. Neural Netw. 16, 195–202 (2005)

    Article  Google Scholar 

  22. Yang, X., Liu, D., Huang, Y.: Neural-network-based online optimal control for uncertain nonlinear continuous-time systems with control constraints. IET Control Theory Appl. 7, 2037–2047 (2013)

    Article  MathSciNet  Google Scholar 

  23. Xiang, X., Yu, C., Lapierre, L., Zhang, J., Zhang, Q.: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 20, 572–586 (2018)

    Article  MathSciNet  Google Scholar 

  24. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2209–2217 (2017)

    Article  Google Scholar 

  25. Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbance. Neurocomputing. 219, 422–430 (2017)

    Article  Google Scholar 

  26. Pan, Y., Yu, H.: Biomimetic hybrid feedback feedforward neural-network learning control. IEEE Trans. Neural. Netw. Learn. Syst. 28, 1481–1487 (2017)

    Article  Google Scholar 

  27. Lu, H., Liu, C., Coombes, M., et al.: Online optimisation-based backstepping control design with application to quadrotor. IET Control Theory Appl. 10, 1601–1611 (2016)

    Article  MathSciNet  Google Scholar 

  28. Chen, W., Ge, S.S., Wu, J., et al.: Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a prior. IEEE Trans. Neural. Netw. Learn. Syst. 26, 1842–1854 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, H.Q., Chen, B., Liu, X.P., et al.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43, 2093–2104 (2013)

    Article  Google Scholar 

  30. Liu, Z., Lai, G., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy tracking control of nonlinear time-delay systems with dead-zone output mechanism based on a novel smooth model. IEEE Trans. Fuzzy Syst. 23, 1998–2011 (2015)

    Article  Google Scholar 

  31. Liu, Z., Lai, G., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural. Netw. Learn. Syst. 25, 2129–2140 (2014)

    Article  Google Scholar 

  32. Swaroop, D., Hedrick, J.K., Yip, P.P.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45, 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  33. Pan, Y., Yu, H.: Composite learning from adaptive dynamic surface control. IEEE Trans. Autom. Control. 61, 2603–2609 (2016)

    Article  MathSciNet  Google Scholar 

  34. Pan, Y., Sun, T., Liu, Y., Yu, H.: Composite learning from adaptive backstepping neural network control. Neural Netw. 95, 134–142 (2017)

    Article  Google Scholar 

  35. Pan, Y., Sun, T., Yu, H.: Composite adaptive dynamic surface control using online recorded data. Int. J. Robust Nonlinear Control 26, 3921–3936 (2016)

    Article  MathSciNet  Google Scholar 

  36. Ma, J., Zheng, Z., Li, P.: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE Trans. Cybern. 45, 728–741 (2015)

    Article  Google Scholar 

  37. Chen, M., Tao, G., Jiang, B.: Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans. Neural netw. Learn. Syst. 26, 2086–2097 (2015)

    Article  MathSciNet  Google Scholar 

  38. Ma, J., Ge, S.S., Zheng, Z., et al.: Adaptive NN control of a class of nonlinear systems with asymmetric saturation actuators. IEEE Trans. Neural Netw. Learn. Syst. 26, 1532–1538 (2015)

    Article  MathSciNet  Google Scholar 

  39. Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45, 2299–2308 (2015)

    Article  Google Scholar 

  40. Gao, S., Ning, B., Dong, H.: Fuzzy dynamic surface control for uncertain nonlinear systems under input saturation via truncated adaptation approach. Fuzzy Sets Syst. 290, 100–117 (2015)

    Article  MathSciNet  Google Scholar 

  41. Mousavi, S.H., Khayatian, A.: Dead-zone model based adaptive backstepping control for a class of uncertain saturated systems. Asian J. Control. 18, 1395–1405 (2016)

    Article  MathSciNet  Google Scholar 

  42. Liao, F., Luo, Q., Ji, H., et al.: Guidance laws with input saturation and nonlinear robust H observers. ISA Trans. 63, 20–31 (2016)

    Article  Google Scholar 

  43. Chen, M., Shi, P., Lim, C.C.: Robust constrained control for MIMO nonlinear systems based on disturbance observer. IEEE Trans. Autom. Control 60, 3281–3286 (2016)

    Article  MathSciNet  Google Scholar 

  44. Yan, X., Chen, M., Wu, Q., et al.: Dynamic surface control for a class of stochastic nonlinear systems with input saturation. IET Control Theory Appl. 10, 35–43 (2016)

    Article  MathSciNet  Google Scholar 

  45. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory. 39, 930–945 (1993)

    Article  MathSciNet  Google Scholar 

  46. Farrell, J.A., Polycarpou, M.M.: Adaptive approximation based control. Wiley, Hoboken (2006)

    Book  Google Scholar 

  47. Ho, D.W.C., Zhang, P.-A., Xu, J.: Fuzzy wavelet network for function learning. IEEE Trans. Fuzzy Syst. 9, 200–211 (2001)

    Article  Google Scholar 

  48. Lin, C.-K.: Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks. IEEE Trans. Fuzzy Syst. 14, 849–859 (2006)

    Article  Google Scholar 

  49. Carrol, J.J., Dawson, D.M.: Integrator backstepping techniques for the tracking control of permanent magnet brush DC motors. IEEE Trans. Ind. Electron. 31, 248–255 (1995)

    Google Scholar 

  50. Shahriari-kahkeshi, M., Sheikholeslam, F.: Adaptive fuzzy wavelet network for robust fault detection and diagnosis in nonlinear systems. IET Control Theory Appl. 8, 1487–1498 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research is carried out under the Grant Number 141/632 of the Shahrekord University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shahriari-Kahkeshi.

Appendix A: Proof of Theorem 1

Appendix A: Proof of Theorem 1

In this section, proof of Theorem 1 is presented. To analysis the stability, the following Lyapunov function candidate is considered:

$$ V = \sum\limits_{i = 1}^{n - 1} {\left( {\frac{1}{{2g_{i} }}e_{i}^{2} + \frac{1}{2}\eta_{i + 1}^{2} } \right)} + \sum\limits_{i = 1}^{n} {\left( {\frac{1}{{2\gamma_{1} }}{\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\tilde{\varvec{\theta }}}_{i} + \frac{1}{{2\gamma_{2} }}{\tilde{\varvec{c}}}_{i}^{\text{T}} {\tilde{\varvec{c}}}_{i} + \frac{1}{{2\gamma_{3} }}{\tilde{\varvec{\omega }}}_{i}^{\text{T}} {\tilde{\varvec{\omega }}}_{i} } \right)} + \frac{1}{2\beta }e_{n}^{2} + \frac{1}{{2\gamma_{\rho } }}\int\limits_{0}^{R} {\tilde{\rho }_{\lambda }^{2} (r,t){\text{d}}r} $$
(A1)

where \( \tilde{\rho }_{\lambda } (r,t) = \rho_{\lambda } (r) - \hat{\rho }_{\lambda } (r,t) \), \( {\tilde{\varvec{\theta }}}_{i} = {\varvec{\theta}}_{i}^{*} - {\hat{\varvec{\theta }}}_{i} \), \( {\tilde{\varvec{c}}}_{i} = {\varvec{c}}_{i}^{*} - {\hat{\varvec{c}}}_{i} \) and \( {\tilde{\varvec{\omega }}}_{i} = {\varvec{\omega}}_{i}^{*} - {\hat{\varvec{\omega }}}_{i} \). Differentiating (A1) with respect to time results in:

$$ \begin{aligned} \dot{V} & = \sum\limits_{{i = 1}}^{{n - 1}} {\left( {\frac{1}{{g_{i} }}e_{i} \dot{e}_{i} - \frac{{\dot{g}_{i} e_{i}^{2} }}{{2g_{i}^{2} }} + \eta _{{i + 1}} \dot{\eta }_{{i + 1}} } \right)} + \frac{1}{\beta }e_{n} \dot{e}_{n} - \sum\limits_{{i = 1}}^{n} {\left( {\frac{1}{{\gamma _{1} }}{\tilde{{\varvec{\theta }}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{\theta }}}}}_{i} + \frac{1}{{\gamma _{2} }}{\tilde{{\varvec{c}}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{c}}}}}_{i} + \frac{1}{{\gamma _{3} }}{\tilde{{\varvec{\omega }}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{\omega }}}}}_{i} } \right)} - \frac{{\dot{\beta }}}{{2\beta ^{2} }}e_{n}^{2} \\ & \quad - \frac{1}{{\gamma _{\rho } }}\int\limits_{0}^{R} {\tilde{\rho }_{\lambda } (r,t)\frac{\partial }{{\partial t}}\hat{\rho }_{\lambda } (r,t){\text{d}}r} \\ \end{aligned} $$
(A2)

Substituting (22), (31) and (39) into (A2) results in:

$$ \begin{aligned} \dot{V} & = \sum\limits_{{i = 1}}^{{n - 1}} {\left( {e_{i} (e_{{i + 1}} + \eta _{{i + 1}} - k_{i} e_{i} + \tilde{h}_{i} ) - \frac{{\dot{g}_{i} e_{i}^{2} }}{{2g_{i}^{2} }} + \eta _{{i + 1}} \dot{\eta }_{{i + 1}} } \right)} + e_{n} \left( { - \,k_{n} e_{n} + \int\limits_{0}^{R} {\left( {\hat{\rho }_{\lambda } (r,t) - \rho _{\lambda } (r)} \right){\text{d}}z_{r} (v){\text{d}}r + \tilde{h}_{n} } } \right) \\ & \quad - \sum\limits_{{i = 1}}^{n} {\left( {\frac{1}{{\gamma _{1} }}{\tilde{{\varvec{\theta }}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{\theta }}}}}_{i} + \frac{1}{{\gamma _{2} }}{\tilde{{\varvec{c}}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{c}}}}}_{i} + \frac{1}{{\gamma _{3} }}{\tilde{{\varvec{\omega }}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{\omega }}}}}_{i} } \right)} - \frac{{\dot{\beta }}}{{2\beta ^{2} }}e_{n}^{2} - \frac{1}{{\gamma _{\rho } }}\int\limits_{0}^{R} {\tilde{\rho }_{\lambda } (r,t)\frac{\partial }{{\partial t}}\hat{\rho }_{\lambda } (r,t){\text{d}}r} \\ \end{aligned} $$
(A3)

Let us define \( {\tilde{\varvec{\psi }}}_{i} = {\varvec{\psi}}_{i}^{*} - {\hat{\varvec{\psi }}}_{i} \). Now, \( \tilde{h}_{i} \) can be written as [50]

$$ \tilde{h}_{i} = {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\hat{\varvec{\psi }}}_{i} + {\hat{\varvec{\theta }}}_{i}^{\text{T}} {\tilde{\varvec{\psi }}}_{i} + {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\tilde{\varvec{\psi }}}_{i} + \delta_{i}^{*} $$
(A4)

where \( i = 1, \ldots ,n \). Adaptive FWN is used as a NIP approximator, so the basis function \( {\varvec{\psi}}_{i} \) has nonlinear dependencies to the adjustable parameters of the network. Therefore, to develop the adaptive learning laws for tuning the network parameters, the Taylor expansion linearization technique is employed to transform the nonlinear function into a partially linear form [48, 50]. The result is obtained as

$$ {\tilde{\varvec{\psi }}}_{i} = A_{i}^{\text{T}} {\tilde{\varvec{\omega }}}_{i} + B_{i}^{\text{T}} {\tilde{\varvec{c}}}_{i} + o_{i} $$
(A5)

where \( i = 1, \ldots ,n \), \( A_{i} = \left. {\left( {\frac{{\partial {\varvec{\psi}}_{i} }}{{\partial {\varvec{\omega}}_{i} }}} \right)} \right|_{{{\varvec{\omega}}_{i} = {\hat{\varvec{\omega }}}_{i} }} \), \( B_{i} = \left. {\left( {\frac{{\partial {\varvec{\psi}}_{i} }}{{\partial {\varvec{c}}_{i} }}} \right)} \right|_{{{\varvec{c}}_{i} = {\hat{\varvec{c}}}_{i} }} \) and \( o_{i} \) is the high-order terms of expansion. Substituting (A5) into (A4) gives:

$$ \tilde{h}_{i} = {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\hat{\varvec{\psi }}}_{i} + {\hat{\varvec{\theta }}}_{i}^{\text{T}} \left( {A_{i}^{\text{T}} {\tilde{\varvec{\omega }}}_{i} + B_{i}^{\text{T}} {\tilde{\varvec{c}}}_{i} } \right) + {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\tilde{\varvec{\psi }}}_{i} + {\hat{\varvec{\theta }}}_{i}^{\text{T}} o_{i} + \delta_{i}^{*} $$
(A6)

Also, substituting (23), (32) and (A6) into (A3) results in:

$$ \begin{aligned} \dot{V} & = - \sum\limits_{{i = 1}}^{{n - 1}} {\left( {k_{i} + \frac{{\dot{g}_{i} }}{{2g_{i}^{2} }}} \right)e_{i}^{2} } - \left( {k_{n} + \frac{{\dot{\beta }}}{{2\beta ^{2} }}} \right)e_{n}^{2} + \sum\limits_{{i = 1}}^{{n - 1}} {e_{i} \left( {e_{{i + 1}} + \eta _{{i + 1}} } \right)} + \sum\limits_{{i = 1}}^{n} {e_{i} \left( {\tilde{\theta }_{i}^{{\text{T}}} \left( {A_{i}^{{\text{T}}} {\tilde{{\varvec{\omega }}}}_{i} + B_{i}^{{\text{T}}} {\tilde{{\varvec{c}}}}_{i} + o_{i} } \right)} \right)} \\ & \quad + \sum\limits_{{i = 1}}^{n} {e_{i} \left( {{\tilde{{\varvec{\theta }}}}_{i}^{{\text{T}}} {\hat{{\varvec{\psi }}}}_{i} + {\hat{{\varvec{\theta }}}}_{i}^{{\text{T}}} \left( {A_{i}^{{\text{T}}} {\tilde{{\varvec{\omega }}}}_{i} + B_{i}^{{\text{T}}} {\tilde{{\varvec{c}}}}_{i} } \right) + {\hat{{\varvec{\theta }}}}_{i}^{{\text{T}}} o_{i} + \delta _{i}^{*} } \right)} + \sum\limits_{{i = 1}}^{{n - 1}} {\left( { - \frac{{\eta _{{i + 1}}^{2} }}{{\tau _{{i + 1}} }} + \eta _{{i + 1}} M_{{i + 1}} } \right)} \\ & \quad - \sum\limits_{{i = 1}}^{n} {\left( {\frac{1}{{\gamma _{1} }}{\tilde{{\varvec{\theta }}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{\theta }}}}}_{i} + \frac{1}{{\gamma _{2} }}{\tilde{{\varvec{c}}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{c}}}}}_{i} + \frac{1}{{\gamma _{3} }}{\tilde{{\varvec{\omega }}}}_{i}^{{\text{T}}} {\dot{\hat{{\varvec{\omega }}}}}_{i} } \right)} + e_{n} \left( {\int\limits_{0}^{R} {\left( {\hat{\rho }_{\lambda } (r,t) - \rho _{\lambda } (r)} \right){\text{d}}z_{r} (v){\text{d}}r} } \right) \\ & \quad - \frac{1}{{\gamma _{\rho } }}\int\limits_{0}^{R} {\tilde{\rho }_{\lambda } (r,t)\frac{\partial }{{\partial t}}\hat{\rho }_{\lambda } (r,t){\text{d}}r} \\ \end{aligned} $$
(A7)

Since \( {\hat{\varvec{\theta }}}_{i}^{\text{T}} A_{i}^{\text{T}} {\tilde{\varvec{\omega }}}_{i} = {\tilde{\varvec{\omega }}}_{i}^{\text{T}} A_{i} {\hat{\varvec{\theta }}}_{i} \) and \( {\hat{\varvec{\theta }}}_{i}^{\text{T}} B_{i}^{\text{T}} {\tilde{\varvec{c}}}_{i} = {\tilde{\varvec{c}}}_{i}^{\text{T}} B_{i} {\hat{\varvec{\theta }}}_{i} \), (A7) is rewritten as:

$$ \begin{aligned} \dot{V} & = - \sum\limits_{i = 1}^{n - 1} {\left( {k_{i} + \frac{{\dot{g}_{i} }}{{2g_{i}^{2} }}} \right)e_{i}^{2} } - \left( {k_{n} + \frac{{\dot{\beta }}}{{2\beta^{2} }}} \right)e_{n}^{2} + \sum\limits_{i = 1}^{n - 1} {e_{i} \left( {e_{i + 1} + \eta_{i + 1} } \right)} + \sum\limits_{i = 1}^{n - 1} {\left( { - \frac{{\eta_{i + 1}^{2} }}{{\tau_{i + 1} }} + \eta_{i + 1} M_{i + 1} } \right)} \\ & \quad + \sum\limits_{i = 1}^{n} {{\tilde{\varvec{\theta }}}_{i}^{\text{T}} \left( {\left( {{\hat{\varvec{\psi }}}_{i} - A_{i}^{\text{T}} {\hat{\varvec{\omega }}}_{i} - B_{i}^{\text{T}} {\hat{\varvec{c}}}_{i} } \right)e_{i} - \frac{1}{{\gamma_{1} }}{\varvec{\dot{\hat{\theta }}}}_{i} } \right)} + \sum\limits_{i = 1}^{n} {{\tilde{\varvec{\omega }}}_{i}^{\text{T}} \left( {A_{i} {\hat{\varvec{\theta }}}_{i} e_{i} - \frac{1}{{\gamma_{3} }}{\varvec{\dot{\hat{\omega }}}}_{i} } \right) + \sum\limits_{i = 1}^{n} {{\tilde{\varvec{c}}}_{i}^{\text{T}} \left( {B_{i} {\hat{\varvec{\theta }}}_{i} e_{i} - \frac{1}{{\gamma_{2} }}{\hat{\varvec{c}}}_{i} } \right)} } \\ & \quad + \sum\limits_{i = 1}^{n} {e_{i} \left( {{\tilde{\varvec{\theta }}}_{i}^{\text{T}} \left( {A_{i}^{\text{T}} {\varvec{\omega}}_{i}^{*} + B_{i}^{\text{T}} {\varvec{c}}_{i}^{*} } \right) + {\varvec{\theta}}_{i}^{{*{\text{T}}}} o_{i} + \delta_{i}^{*} } \right)} - \frac{1}{{\gamma_{\rho } }}\int\limits_{0}^{R} {\tilde{\rho }_{\lambda } (r,t)\left( {\frac{\partial }{\partial t}\hat{\rho }_{\lambda } (r,t) + \gamma_{\rho } e_{n} {\text{d}}z_{r} (v)} \right)} {\text{d}}r \\ \end{aligned} $$
(A8)

Let us define \( \Delta_{i} = {\tilde{\varvec{\theta }}}_{i}^{T} \left( {A_{i}^{T} {\varvec{\omega}}_{i}^{*} + B_{i}^{T} {\varvec{c}}_{i}^{*} } \right) + {\varvec{\theta}}_{i}^{*T} o_{i} + \delta_{i}^{*} \) for \( i = 1, \ldots ,n \). Substituting adaptive laws (20), (29) and (38) into (A8) results in:

$$ \begin{aligned} \dot{V} & = - \sum\limits_{i = 1}^{n - 1} {\left( {k_{i} + \frac{{\dot{g}_{i} }}{{2g_{i}^{2} }}} \right)e_{i}^{2} } - \left( {k_{n} + \frac{{\dot{\beta }}}{{2\beta^{2} }}} \right)e_{n}^{2} + \sum\limits_{i = 1}^{n - 1} {e_{i} \left( {e_{i + 1} + \eta_{i + 1} } \right)} + \sum\limits_{i = 1}^{n - 1} {\left( { - \frac{{\eta_{i + 1}^{2} }}{{\tau_{i + 1} }} + \eta_{i + 1} M_{i + 1} } \right)} \\ & \quad + \sum\limits_{i = 1}^{n} {\sigma {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\hat{\varvec{\theta }}}_{i} } + \sum\limits_{i = 1}^{n} {\sigma {\tilde{\varvec{\omega }}}_{i}^{\text{T}} {\hat{\varvec{\omega }}}_{i} + \sum\limits_{i = 1}^{n} {\sigma {\tilde{\varvec{c}}}_{i}^{\text{T}} {\hat{\varvec{c}}}_{i} } } + \sum\limits_{i = 1}^{n} {e_{i} \Delta_{i} } + \sigma_{\rho } \int\limits_{0}^{R} {\hat{\rho }_{\lambda } (t,r)\tilde{\rho }_{\lambda } (r,t)} {\text{d}}r \\ \end{aligned} $$
(A9)

Considering the following facts

$$ \begin{aligned} & e_{i} e_{i + 1} \le 0.5\left( {e_{i}^{2} + e_{i + 1}^{2} } \right),\quad i = 1,2, \ldots ,n \\ & e_{i} \eta_{i + 1} \le 0.5\left( {e_{i}^{2} + \eta_{i + 1}^{2} } \right),\quad i = 1,2, \ldots ,n - 1 \\ & \left| {\eta_{i + 1} M_{i + 1} } \right| \le 0.5\varepsilon \eta_{i + 1}^{2} + 0.5\varepsilon^{ - 1} \bar{M}_{i + 1}^{2} ,\quad i = 1,2, \ldots ,n - 1 \\ & e_{i} \Delta_{i} \le 0.5\left( {e_{i}^{2} + \bar{\Delta }_{i}^{2} } \right),\quad i = 1,2, \ldots n \\ & \tilde{\rho }_{\lambda } (r,t)p \le 0.5\tilde{\rho }_{\lambda }^{2} (r,t) + 0.5p_{{\lambda_{\hbox{max} } }}^{2} \\ \end{aligned} $$
(A10)

where \( \rho_{\lambda } (r) \le \rho_{\lambda \hbox{max} } \), and \( \varepsilon \) is a positive constant. Also, considering the following inequalities

$$ \begin{aligned} & {\tilde{\varvec{\omega }}}_{i}^{\text{T}} {\hat{\varvec{\omega }}}_{i} \le 0.5\left( {{\varvec{\omega}}_{i}^{{*{\text{T}}}} {\varvec{\omega}}_{i}^{*} - {\tilde{\varvec{\omega }}}_{i}^{\text{T}} {\tilde{\varvec{\omega }}}_{i} } \right),\quad i = 1,2, \ldots ,n \\ & {\tilde{\varvec{c}}}_{i}^{\text{T}} {\hat{\varvec{c}}}_{i} \le 0.5\left( {{\varvec{c}}_{i}^{{*{\text{T}}}} {\varvec{c}}_{i}^{*} - {\tilde{\varvec{c}}}_{i}^{\text{T}} {\tilde{\varvec{c}}}_{i} } \right),\quad i = 1,2, \ldots ,n \\ & {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\hat{\varvec{\theta }}}_{i} \le 0.5\left( {{\varvec{\theta}}_{i}^{{*{\text{T}}}} {\varvec{\theta}}_{i}^{*} - {\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\tilde{\varvec{\theta }}}_{i} } \right),\quad i = 1,2, \ldots ,n \\ \end{aligned} $$
(A11)

Now, using (A10) and (A11), (A9) is written as

$$ \begin{aligned} \dot{V} & \le - \,\left( {k_{1} - \frac{{g_{1}^{d} }}{{2g_{l1}^{2} }} - 1.5} \right)e_{1}^{2} - \sum\limits_{i = 2}^{n - 1} {\left( {k_{i} - \frac{{g_{i}^{d} }}{{2g_{li}^{2} }} - 2} \right)e_{i}^{2} } - \left( {k_{n} - \frac{{\beta^{d} }}{{2\beta_{l}^{2} }} - 1} \right)e_{n}^{2} - \sum\limits_{i = 1}^{n - 1} {\left( {\frac{1}{{\tau_{i + 1} }} - 0.5\varepsilon - 0.5} \right)} \eta_{i + 1}^{2} \\ & \quad + 0.5\sigma \sum\limits_{i = 1}^{n} {\left( {\bar{\theta }_{i}^{2} + \bar{c}_{i}^{2} + \,\bar{\omega }_{i}^{2} } \right) + 0.5\sum\limits_{i = 1}^{n - 1} {\left( {\bar{\Delta }_{i}^{2} + \varepsilon^{ - 1} \bar{M}_{i + 1}^{2} } \right)} - 0.5\sigma \sum\limits_{i = 1}^{n} {\left( {{\tilde{\varvec{\theta }}}_{i}^{\text{T}} {\tilde{\varvec{\theta }}}_{i} + {\tilde{\varvec{c}}}_{i}^{\text{T}} {\tilde{\varvec{c}}}_{i} + {\tilde{\varvec{\omega }}}_{i}^{\text{T}} {\tilde{\varvec{\omega }}}_{i} } \right)} } \\ & \quad - \sigma_{\rho } \int\limits_{0}^{R} {\left( {0.5\tilde{\rho }_{\lambda }^{2} (r,t) - 0.5p_{{\lambda_{\hbox{max} } }}^{2} } \right)} {\text{d}}r \\ \end{aligned} $$
(A12)

Choose the deign parameters \( k_{i} \), \( \tau_{i + 1} \), \( \sigma \) and \( \sigma_{\rho } \) such that \( k_{1} - \frac{{g_{1}^{d} }}{{2g_{l1}^{2} }} - 1.5 > 0 \), \( k_{i} - \frac{{g_{i}^{d} }}{{2g_{li}^{2} }} - 2 > 0,\quad i = 2, \ldots ,n - 1 \), \( k_{n} - \frac{{\beta^{d} }}{{2\beta_{l}^{2} }} - 1 > 0 \), \( \frac{1}{{\tau_{i + 1} }} - 0.5\varepsilon - 0.5 > 0 \), \( \sigma > 0 \) and \( \sigma_{\rho } > 0 \), respectively.

Considering the design parameters \( k_{i} \), \( \tau_{i + 1} \), \( \sigma \) and \( \sigma_{\rho } \), comparing (A12) with (A1) reveals that (A12) satisfies the following inequality

$$ \dot{V} \le - \alpha V + \beta $$
(A13)

where \( \alpha \) and \( \beta \) are as follows:

$$ \alpha \le \min \left( {\begin{array}{*{20}l} {2g_{{h1}} \left( {k_{1} - 1.5 - \frac{{g_{1}^{d} }}{{2g_{{l1}}^{2} }}} \right)} \hfill \\ {2g_{{hi}} \left( {k_{i} - 2 - \frac{{g_{i}^{d} }}{{2g_{{li}}^{2} }}} \right)} \hfill \\ {2\beta _{h} \left( {k_{n} - 1 - \frac{{\beta ^{d} }}{{2\beta _{l}^{2} }}} \right)} \hfill \\ {\frac{2}{{\tau _{{i + 1}} }} - \varepsilon - 1} \hfill \\ {\sigma \gamma _{1} ,\sigma \gamma _{2} ,\sigma \gamma _{2} } \hfill \\ {\sigma _{\rho } \gamma _{\rho } } \hfill \\ \end{array} } \right) $$
$$ \beta = 0.5\sum\limits_{i = 1}^{n - 1} {\left( {\bar{\Delta }_{i}^{2} + \varepsilon^{ - 1} \bar{M}_{i + 1}^{2} } \right)} + 0.5\sigma \sum\limits_{i = 1}^{n} {\left( {\bar{\theta }_{i}^{2} + \bar{c}_{i}^{2} + \bar{\omega }_{i}^{2} } \right)} + 0.5\sigma_{\rho } Rp_{{\lambda_{\hbox{max} } }}^{2} $$

Solving inequality (A13) results in:

$$ 0 \le V \le \frac{\beta }{\alpha } + \left( {V(0) - \frac{\beta }{\alpha }} \right)e^{ - \alpha t} $$
(A14)

From (A14), it is obtained that \( \lim_{t \to \infty } V = \frac{\beta }{\alpha } \). So, \( V \) is bounded by \( \frac{\beta }{\alpha } \). Therefore, all signals of the closed-loop system, i.e. \( e_{i} ,\,\eta_{i + 1} ,\,{\tilde{\varvec{\theta }}}_{i} ,\,{\tilde{\varvec{c}}}_{i} ,\,{\tilde{\varvec{\omega }}}_{i} \) and \( \tilde{\rho }_{\lambda } \) are uniformly ultimately bounded. From the considered Lyapunov function in (A1), it can be inferred that

$$ \frac{1}{{2g_{1} }}\,e_{1}^{2} \le V $$
(A15)

Considering Assumption 2, Eq. (A15) is written as

$$ e_{1}^{2} \le 2g_{h1} V $$
(A16)

which results in the following bound

$$ \left| {e_{1} (t)} \right| \le \sqrt {2g_{h1} V} $$
(A17)

Now, considering (A14), the following bound is obtained for the tracking error

$$ \left| {e_{1} } \right| \le \sqrt {2g_{h1} \left( {e^{ - \alpha \,t} V(0) + \frac{\beta }{\alpha }(1 - e^{ - \alpha t} )} \right)} $$
(A18)

It is seen form (A18) that the bound of the tracking error can be made arbitrarily small by proper selection of the design parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriari-Kahkeshi, M. Dead-Zone Model-Based Adaptive Fuzzy Wavelet Control for Nonlinear Systems Including Input Saturation and Dynamic Uncertainties. Int. J. Fuzzy Syst. 20, 2577–2592 (2018). https://doi.org/10.1007/s40815-018-0515-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0515-2

Keywords

Navigation