Skip to main content
Log in

A Framework of Group Decision Making with Hesitant Fuzzy Preference Relations Based on Multiplicative Consistency

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop a general framework of group decision making with hesitant fuzzy preference relations based on the multiplicative consistency. First, we define a consistency index to measure whether or not a hesitant fuzzy preference relation is of acceptably multiplicative consistency. A consistency improving process is developed to improve the consistency level of a hesitant fuzzy preference relation with unacceptably multiplicative consistency until it is acceptably multiplicative. Then, we present a group consensus index to measure the deviation measure between the individual hesitant fuzzy preference relations and their collective hesitant fuzzy preference relation. A consensus reaching process is developed to help the decision makers improve the consensus level among hesitant fuzzy preference relations until they meet a predefined consensus level. Subsequently, we establish a complete framework of group decision making with hesitant fuzzy preference relations. In this framework, individual multiplicative consistency and group consensus are simultaneously highlighted and the acceptably multiplicative consistency of each hesitant fuzzy preference relation is still maintained in the achievement of the predefined consensus level. Finally, an illustrative numerical example is given to verify the effectiveness and practicality of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alonso, S., Cabrerizo, F.J., Chiclana, F., Herrera, F., Herrera-Viedma, E.: An interactive decision support system based on consistency criteria. J. Multi Valued Logic Soft Comput. 14, 371–386 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Alonso, S., Chiclana, F., Herrera, F., Herrera-Viedma, E., Alcala-Fdez, J., Porcelet, C.: A consistency based procedure to estimate missing pairwise preference values. Int. J. Intell. Syst. 23, 155–175 (2008)

    Article  MATH  Google Scholar 

  3. Alonso, S., Herrera-Viedma, E., Chiclana, F., Herrera, F.: A web based consensus support system for group decision making problems and incomplete preferences. Inf. Sci. 180, 4477–4495 (2010)

    Article  MathSciNet  Google Scholar 

  4. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabrerizo, F.J., Chiclana, F., Al-Hmouz, R., Morfeq, A., Balamash, A.S., Herrera-Viedma, E.: Fuzzy decision making and consensus: challenges. J. Intell. Fuzzy Syst. 29(3), 1109–1118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabrerizo, F.J., Moreno, J.M., Pérez, I.J., Herrera-Viedma, E.: Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft. Comput. 14(5), 451–463 (2010)

    Article  Google Scholar 

  7. Cabrerizo, F.J., Ureña, M.R., Pedrycz, W., Herrera-Viedma, E.: Building consensus in group decision making with an allocation of information granularity. Fuzzy Sets Syst. 255, 115–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, N., Xu, Z.S., Xia, M.M.: Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Appl. Math. Model. 37(4), 2197–2211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiclana, F., Herrera-Viedma, E., Alonso, S., Herrera, F.: Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE Trans. Fuzzy Syst. 17, 277–291 (2009)

    Article  MATH  Google Scholar 

  10. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  11. Herrera-Viedma, E., Cabrerizo, F.J., Kacprzyk, J., Pedrycz, W.: A review of soft consensus models in a fuzzy environment. Inf. Fusion 17, 4–13 (2014)

    Article  Google Scholar 

  12. Liao, H.C., Xu, Z.S.: Priorities of intuitionistic fuzzy preference relation based on multiplicative consistency. IEEE Trans. Fuzzy Syst. 22(6), 1669–1681 (2014)

    Article  Google Scholar 

  13. Liao, H.C., Xu, Z.S., Xia, M.M.: Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making. Int. J. Inf. Technol. Decis. Mak. 13(1), 47–76 (2014)

    Article  Google Scholar 

  14. Liao, H.C., Xu, Z.S., Zeng, X.J., Merigó, J.M.: Framework of group decision making with intuitionistic fuzzy preference information. IEEE Trans. Fuzzy Syst. 23(4), 1211–1227 (2015)

    Article  Google Scholar 

  15. Mata, F., Perez, L.G., Zhou, S.-M., Chiclana, F.: Type-1 OWA methodology to consensus reaching processes in multi-granular linguistic contexts. Knowl. Based Syst. 58, 11–22 (2014)

    Article  Google Scholar 

  16. Miyamoto, S.: Multisets and fuzzy multisets. In: Liu, Z.-Q., Miyamoto, S. (eds.) Soft Computing and Human-Centered Machines, pp. 9–33. Springer, Berlin (2000)

    Chapter  Google Scholar 

  17. Orlovsky, S.A.: Decision-making with a fuzzy preference relation. Fuzzy Sets Syst. 1(3), 155–167 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rodriguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)

    Article  Google Scholar 

  19. Saaty, T.L.: A ratio scale metric and compatibility of ratio scales: the possibility of Arrow’s impossibility theorem. Appl. Math. Lett. 7, 51–57 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  21. Ureña, R., Chiclana, F., Fujita, H., Herrera-Viedma, E.: Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations. Knowl. Based Syst. 89, 86–96 (2015)

    Article  Google Scholar 

  22. Wang, L.F.: Compatibility and group decision making. Syst. Eng. Theory Pract. 20, 92–96 (2000)

    Google Scholar 

  23. Wang, Z.J., Li, K.W.: Goal programming approaches to deriving interval weights based on interval fuzzy preference relations. Inf. Sci. 193, 180–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Z.J., Tong, X.Y.: Consistency analysis and group decision making based on triangular fuzzy additive reciprocal preference relations. Inf. Sci. 361–362, 29–47 (2016)

    Article  Google Scholar 

  25. Wu, J., Chiclana, F.: A social network analysis trust-consensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations. Knowl. Based Syst. 59, 97–107 (2014)

    Article  Google Scholar 

  26. Wu, J., Chiclana, F.: Multiplicative consistency of intuitionistic reciprocal preference relations and its application to missing values estimation and consensus building. Knowl. Based Syst. 71, 187–200 (2014)

    Article  Google Scholar 

  27. Wu, J., Chiclana, F.: Visual information feedback mechanism and attitudinal prioritisation method for group decision making with triangular fuzzy complementary preference relations. Inf. Sci. 279, 716–734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, J., Chiclana, F.: A risk attitudinal ranking method for interval-valued intuitionistic fuzzy numbers based on novel score and accuracy expected functions. Appl. Soft Comput. 22, 272–286 (2014)

    Article  Google Scholar 

  29. Wu, J., Xiong, R.Y., Chiclana, F.: Uninorm trust propagation and aggregation methods for group decision making in social network with four tuples information. Knowl. Based Syst. 96, 29–39 (2016)

    Article  Google Scholar 

  30. Xia, M.M., Xu, Z.S.: Methods for fuzzy complementary preference relations based on multiplicative consistency. Comput. Ind. Eng. 61, 930–935 (2011)

    Article  Google Scholar 

  31. Xia, M.M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52(3), 395–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xia, M.M., Xu, Z.S.: Managing hesitant information in GDM problems under fuzzy and multiplicative preference relations. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 21(6), 865–897 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xia, M.M., Xu, Z.S., Chen, J.: Algorithms for improving consistency or consensus of reciprocal [0, 1]-valued preference relations. Fuzzy Sets Syst. 216, 108–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, Z.S., Chen, J.: Some models for deriving the priority weights from interval fuzzy preference relations. Eur. J. Oper. Res. 184, 266–280 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, Z.S., Xia, M.M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181(11), 2128–2138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, Z.S., Xia, M.M.: Iterative algorithms for improving consistency of intuitionistic preference relations. J. Oper. Res. Soc. 65(5), 708–722 (2014)

    Article  Google Scholar 

  37. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  38. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning, Part 1. Inf. Sci. 8(3), 199–249 (1975)

    Article  MATH  Google Scholar 

  39. Zhang, Z.M.: Induced generalized hesitant fuzzy operators and their application to multiple attribute group decision making. Comput. Ind. Eng. 67, 116–138 (2014)

    Article  Google Scholar 

  40. Zhang, Z.M., Wang, C., Tian, X.D.: A decision support model for group decision making with hesitant fuzzy preference relations. Knowl. Based Syst. 86, 77–101 (2015)

    Article  Google Scholar 

  41. Zhu, B.: Studies on consistency measure of hesitant fuzzy preference relations. Proc. Comput. Sci. 17, 457–464 (2013)

    Article  Google Scholar 

  42. Zhu, B., Xu, Z.S.: Regression methods for hesitant fuzzy preference relations. Technol. Econ. Dev. Econ. 19(Supplement 1), S214–S227 (2013)

    Article  Google Scholar 

  43. Zhu, B., Xu, Z.S., Xu, J.P.: Deriving a ranking from hesitant fuzzy preference relations under group decision making. IEEE Trans. Cybern. 44(8), 1328–1337 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referees for their valuable suggestions in improving this paper. This work is supported by the National Natural Science Foundation of China (Grant No. 61375075), the Natural Science Foundation of Hebei Province of China (Grant No. F2012201020), and the Scientific Research Project of Department of Education of Hebei Province of China (Grant No. QN2016235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zhang.

Appendix

Appendix

The proof of Theorem 3.1

$$\begin{aligned} {\kern 1pt} {\text{CI}}\left( {H^{{\left( {t + 1} \right)}} } \right) & = d\left( {H^{{\left( {t + 1} \right)}} ,\tilde{H}^{{\left( {t + 1} \right)}} } \right) \le d\left( {H^{{\left( {t + 1} \right)}} ,\tilde{H}^{\left( t \right)} } \right) \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left[ \begin{aligned} \ln \left( {\left( {h_{ij}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ - \ln \left( {\left( {\tilde{h}_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) + \ln \left( {\left( {\tilde{h}_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ \end{aligned} \right]^{2} } } } \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left[ \begin{aligned} \left( {1 - \delta } \right)\ln \left( {\left( {h_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) + \delta \ln \left( {\left( {\tilde{h}_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ - \left( {1 - \delta } \right)\ln \left( {\left( {h_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) - \delta \ln \left( {\left( {\tilde{h}_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ - \ln \left( {\left( {\tilde{h}_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) + \ln \left( {\left( {\tilde{h}_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ \end{aligned} \right]}^{2} } } \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left[ \begin{aligned} \left( {1 - \delta } \right)\ln \left( {\left( {h_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) - \left( {1 - \delta } \right)\ln \left( {\left( {h_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ - \left( {1 - \delta } \right)\ln \left( {\left( {\tilde{h}_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) + \left( {1 - \delta } \right)\ln \left( {\left( {\tilde{h}_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ \end{aligned} \right]}^{2} } } \\ & = \frac{{2\left( {1 - \delta } \right)^{2} }}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left[ \begin{aligned} \ln \left( {\left( {h_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ - \ln \left( {\left( {\tilde{h}_{ij}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) + \ln \left( {\left( {\tilde{h}_{ji}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) \hfill \\ \end{aligned} \right]}^{2} } } \\ & = \left( {1 - \delta } \right)^{2} d\left( {H^{\left( t \right)} ,\tilde{H}^{\left( t \right)} } \right) \le {\text{CI}}\left( {H^{\left( t \right)} } \right) \\ \end{aligned}$$

which completes the proof. Moreover, \({\text{CI}}\left( {H^{\left( t \right)} } \right) \ge 0\), for each t. Thus, the sequence \(\left\{ {{\text{CI}}\left( {H^{\left( t \right)} } \right)} \right\}\) is monotonically decreasing and has lower bounds.

The proof of Theorem 3.2

(1) According to Eq. (11), for all \(i,j = 1,2, \ldots ,n\), we have

$$\begin{aligned} h_{{ij,{\text{c}}}}^{\sigma \left( s \right)} + h_{{ji,{\text{c}}}}^{\sigma \left( s \right)} & = \frac{{\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } }}{{\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } + \prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } }} \\ & \quad + \;\frac{{\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } }}{{\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } + \prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } }} = 1 \\ \end{aligned}$$
$$\begin{aligned} h_{{ii,{\text{c}}}}^{\sigma \left( s \right)} & = \frac{{\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ii,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } }}{{\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ii,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } + \prod\limits_{k = 1}^{m} {\left( {1 - \bar{h}_{ii,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } }} \\ & = 0.5 \\ \end{aligned}$$

According to Definition 2.4, H c is a HFPR.

(2) Let \(\tilde{H}_{\text{c}} = \left( {\tilde{h}_{{ij,{\text{c}}}} } \right)_{n \times n} = \left( {\left\{ {\left. {\tilde{h}_{{ij,{\text{c}}}}^{\sigma \left( s \right)} } \right|s = 1,2, \ldots ,l} \right\}} \right)_{n \times n}\) be the multiplicative consistent HFPR of \(H_{\text{c}} = \left( {h_{{ij,{\text{c}}}} } \right)_{n \times n}\) obtained by Eq. (6), i.e., \(\tilde{h}_{{ij,{\text{c}}}}^{\sigma \left( s \right)} = \frac{{\sqrt[n]{{\prod\limits_{k = 1}^{n} {h_{{ik,{\text{c}}}}^{\sigma \left( s \right)} \cdot h_{{kj,{\text{c}}}}^{\sigma \left( s \right)} } }}}}{{\sqrt[n]{{\prod\limits_{k = 1}^{n} {h_{{ik,{\text{c}}}}^{\sigma \left( s \right)} \cdot h_{{kj,{\text{c}}}}^{\sigma \left( s \right)} } }} + \sqrt[n]{{\prod\limits_{k = 1}^{n} {\left( {1 - h_{{ik,{\text{c}}}}^{\sigma \left( s \right)} } \right)\left( {1 - h_{{kj,{\text{c}}}}^{\sigma \left( s \right)} } \right)} }}}}\).

Let \(\varepsilon_{ij,k}^{\sigma \left( s \right)} = \ln \left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right) - \ln \left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right) - \ln \left( {\tilde{h}_{ij,k}^{\sigma \left( s \right)} } \right) + \ln \left( {\tilde{h}_{ji,k}^{\sigma \left( s \right)} } \right)\), then we have

$$\begin{aligned} {\text{CI}}\left( {H_{\text{c}} } \right) = d\left( {H_{\text{c}} ,\tilde{H}_{\text{c}} } \right) & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\ln \left( {h_{{ij,{\text{c}}}}^{\sigma \left( s \right)} } \right) - \ln \left( {h_{{ji,{\text{c}}}}^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \;\ln \left( {\tilde{h}_{{ij,{\text{c}}}}^{\sigma \left( s \right)} } \right) + \ln \left( {\tilde{h}_{{ji,{\text{c}}}}^{\sigma \left( s \right)} } \right)} \right)^{2} \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\ln \left( {\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } } \right) - \ln \left( {\prod\limits_{k = 1}^{m} {\left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right)^{{\lambda_{k} }} } } \right)} \right.} } } \\ & \quad \left. { - \;\ln \left( {\sqrt[n]{{\prod\limits_{t = 1}^{n} {h_{{it,{\text{c}}}}^{\sigma \left( s \right)} \cdot h_{{tj,{\text{c}}}}^{\sigma \left( s \right)} } }}} \right) + \ln \left( {\sqrt[n]{{\prod\limits_{t = 1}^{n} {h_{{jt,{\text{c}}}}^{\sigma \left( s \right)} \cdot h_{{ti,{\text{c}}}}^{\sigma \left( s \right)} } }}} \right)} \right)^{2} \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right) - \sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \;\sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\sqrt[n]{{\prod\limits_{t = 1}^{n} {\bar{h}_{it,k}^{\sigma \left( s \right)} \cdot \bar{h}_{tj,k}^{\sigma \left( s \right)} } }}} \right) + \sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\sqrt[n]{{\prod\limits_{t = 1}^{n} {\bar{h}_{jt,k}^{\sigma \left( s \right)} \cdot \bar{h}_{ti,k}^{\sigma \left( s \right)} } }}} \right)} \right)^{2} \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\bar{h}_{ij,k}^{\sigma \left( s \right)} } \right) - \sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\bar{h}_{ji,k}^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \;\sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\tilde{h}_{ij,k}^{\sigma \left( s \right)} } \right) + \sum\limits_{k = 1}^{m} {\lambda_{k} } \ln \left( {\tilde{h}_{ji,k}^{\sigma \left( s \right)} } \right)} \right)^{2} \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\sum\limits_{k = 1}^{m} {\lambda_{k} } \varepsilon_{ij,k}^{\sigma \left( s \right)} } \right)^{2} } } } \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\sum\limits_{k = 1}^{m} {\lambda_{k}^{2} } \left( {\varepsilon_{ij,k}^{\sigma \left( s \right)} } \right)^{2} + 2\sum\limits_{p = 1}^{m - 1} {\sum\limits_{q = p + 1}^{m} {\lambda_{p} \lambda_{q} \varepsilon_{ij,p}^{\sigma \left( s \right)} \varepsilon_{ij,q}^{\sigma \left( s \right)} } } } \right)} } } \\ & = \sum\limits_{k = 1}^{m} {\lambda_{k}^{2} } \left[ {\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\varepsilon_{ij,k}^{\sigma \left( s \right)} } \right)^{2} } } } } \right] \\ & \quad + \;2\sum\limits_{p = 1}^{m - 1} {\sum\limits_{q = p + 1}^{m} {\lambda_{p} \lambda_{q} \left[ {\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\varepsilon_{ij,p}^{\sigma \left( s \right)} \varepsilon_{ij,q}^{\sigma \left( s \right)} } } } } \right]} } \\ & \le \sum\limits_{k = 1}^{m} {\lambda_{k}^{2} } \left[ {\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\varepsilon_{ij,k}^{\sigma \left( s \right)} } \right)^{2} } } } } \right] \\ & \quad + \;2\sum\limits_{p = 1}^{m - 1} {\sum\limits_{q = p + 1}^{m} {\lambda_{p} \lambda_{q} \hbox{max} \left\{ {\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\varepsilon_{ij,p}^{\sigma \left( s \right)} } \right)^{2} } } } ,\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\varepsilon_{ij,q}^{\sigma \left( s \right)} } \right)^{2} } } } } \right\}} } \\ & \le \left( {\sum\limits_{k = 1}^{m} {\lambda_{k} } } \right)^{2} \mathop {\hbox{max} }\limits_{1 \le k \le m} \left\{ {\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\varepsilon_{ij,k}^{\sigma \left( s \right)} } \right)^{2} } } } } \right\} \\ & = \mathop {\hbox{max} }\limits_{1 \le k \le m} \left\{ {\frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\varepsilon_{ij,k}^{\sigma \left( s \right)} } \right)^{2} } } } } \right\} = \mathop {\hbox{max} }\limits_{1 \le k \le m} \left\{ {{\text{CI}}\left( {H_{k} } \right)} \right\} \\ \end{aligned}$$

(3) can be directly derived from (2).

The proof of Theorem 4.1

(1) According to Eqs. (11), (12) and (14), for all \(k = 1,2, \ldots ,m\), we have

$$\begin{aligned} {\text{GCI}}\left( {H_{k}^{{\left( {t + 1} \right)}} } \right) & = d\left( {H_{k}^{{\left( {t + 1} \right)}} ,H_{\text{c}}^{{\left( {t + 1} \right)}} } \right) \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\ln \left( {\left( {h_{ij,k}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji,k}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \;\ln \left( {\left( {h_{{ij,{\text{c}}}}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) + \ln \left( {\left( {h_{{ji,{\text{c}}}}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right)} \right)^{2} \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\ln \left( {\left( {h_{ij,k}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji,k}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \;\sum\limits_{p = 1}^{m} {\lambda_{p} } \ln \left( {\left( {h_{ij,p}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) + \sum\limits_{p = 1}^{m} {\lambda_{p} } \ln \left( {\left( {h_{ji,p}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right)} \right)^{2} \\ & = \frac{2}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\sum\limits_{p = 1}^{m} {\lambda_{p} \left( {\ln \left( {\left( {h_{ij,k}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji,k}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right)} \right.} } \right.} } } \\ & \quad \left. {\left. { - \ln \left( {\left( {h_{ij,p}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right) + \ln \left( {\left( {h_{ji,p}^{{\left( {t + 1} \right)}} } \right)^{\sigma \left( s \right)} } \right)} \right)} \right)^{2} \\ & = \frac{{2\left( {1 - \eta } \right)}}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\ln \left( {\left( {h_{ij,k}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji,k}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \sum\limits_{p = 1}^{m} {\lambda_{p} } \left( {\ln \left( {\left( {h_{ij,p}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right)} \right) + \sum\limits_{p = 1}^{m} {\lambda_{p} } \left( {\ln \left( {\left( {h_{ji,p}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right)} \right)} \right)^{2} \\ & = \frac{{2\left( {1 - \eta } \right)}}{{n\left( {n - 1} \right)l}}\sum\limits_{i = 1}^{n - 1} {\sum\limits_{j = i + 1}^{n} {\sum\limits_{s = 1}^{l} {\left( {\ln \left( {\left( {h_{ij,k}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) - \ln \left( {\left( {h_{ji,k}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right)} \right.} } } \\ & \quad \left. { - \ln \left( {\left( {h_{ij,c}^{\left( t \right)} } \right)^{\sigma \left( s \right)} } \right) + \ln \left( {\left( {h_{ji,c}^{\left( t \right)} } \right)} \right)} \right)^{2} \\ & = \left( {1 - \eta } \right){\text{GCI}}\left( {H_{k}^{\left( t \right)} } \right) < {\text{GCI}}\left( {H_{k}^{\left( t \right)} } \right) \\ \end{aligned}$$

(2) Let \(\left\{ {H_{k}^{{\left( {t + 1} \right)}} = \left( {h_{ij,k}^{{\left( {t + 1} \right)}} } \right)_{n \times n} } \right\}\) (\(k = 1,2, \ldots ,m\)) be the HFPR sequence in the iteration t+1 derived by Eq. (14). From Eq. (14), we know that \(H_{k}^{{\left( {t + 1} \right)}}\) is the combination of \(H_{k}^{\left( t \right)}\) and \(H_{\text{c}}^{\left( t \right)}\). According to Theorem 3.2, we have \({\text{CI}}\left( {H_{k}^{{\left( {t + 1} \right)}} } \right) \le \hbox{max} \left\{ {{\text{CI}}\left( {H_{k}^{\left( t \right)} } \right),{\text{CI}}\left( {H_{\text{c}}^{\left( t \right)} } \right)} \right\} \le \mathop {\hbox{max} }\limits_{1 \le k \le m} \left\{ {{\text{CI}}\left( {H_{k}^{\left( t \right)} } \right)} \right\}\). Consequently, \(\mathop {\hbox{max} }\limits_{1 \le k \le m} \left\{ {{\text{CI}}\left( {H_{k}^{{\left( {t + 1} \right)}} } \right)} \right\} \le \mathop {\hbox{max} }\limits_{1 \le k \le m} \left\{ {{\text{CI}}\left( {H_{k}^{\left( t \right)} } \right)} \right\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. A Framework of Group Decision Making with Hesitant Fuzzy Preference Relations Based on Multiplicative Consistency. Int. J. Fuzzy Syst. 19, 982–996 (2017). https://doi.org/10.1007/s40815-016-0219-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0219-4

Keywords

Navigation