Skip to main content

Advertisement

Log in

Fuzzy Finite-Time Dynamic Surface Control for Nonlinear Large-Scale Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a new finite-time dynamic surface control (DSC) method is proposed to enhance the convergence rate and robustness of a DSC system on the basis of the traditional infinite-time stability viewpoint for application to nonlinear large-scale systems. By defining a novel recursive finite-time virtual error variable, a virtual controlled stabilizing functions are derived, and the finite-time control performance is ensured by means of the finite-time-based Lyapunov stability theorem. An adaptive fuzzy logic system is adopted to approximate the unknown functions. The applicability of the proposed control strategy is verified by simulation and an experiment for a mobile manipulator and an articulated manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kokotovic, P., Kalil, H.K., O’Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. SIAM, London (1986)

    Google Scholar 

  2. Krishnamurthy, P., Khorrami, F.: A singular perturbation based global dynamic high gain scaling control design for systems with nonlinear input uncertainties. IEEE Trans. A. C. 58(10), 2686–2692 (2013)

    Article  MathSciNet  Google Scholar 

  3. Isidori, A., Rubeti, A.: On the synthesis of linear input-output responses for nonlinear systems. Syst. Control Lett. 4(1), 16–22 (1984)

    Article  MathSciNet  Google Scholar 

  4. Slotine, J.J., Hedrick, J.K.: Robust input-output linearization. Int. J. Control 57(5), 1133–1139 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kristic, K., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  6. Swaroop, S., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. A. C. 45(10), 1893–1899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chwa, D.: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2011)

    Article  Google Scholar 

  8. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  9. Leu, Y.G.: Backstpping nonlinear control using nonlinear parametric fuzzy systems. Inter. J. Fuzzy Syst. 11(4), 225–231 (2009)

    MathSciNet  Google Scholar 

  10. Tong, S.C., Liu, C., Li, Y.: Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 18(5), 845–861 (2010)

    Article  Google Scholar 

  11. Tong, S.C., Li, Y., Feng, G., Li, T.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cyber Part B. 41(4), 1124–1135 (2011)

    Article  Google Scholar 

  12. Tong, S.C., Li, Y., Li, Y., Liu, Y.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cyber 41(6), 1693–1704 (2011)

    Article  MathSciNet  Google Scholar 

  13. Yu, J.: Adaptive fuzzy stabilization for a class of pure-feedback systems with unknown dead-zones. Inter. J. Fuzzy Syst. 15(3), 18–26 (2013)

    MathSciNet  Google Scholar 

  14. Tong, S.C., Wang, T., Li, Y.M., Chen, B.: Combined backstepping and stochastic small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 21(2), 265–275 (2013)

    Article  Google Scholar 

  15. Tong, S.C., Sui, S., Li, Y.M.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)

    Article  Google Scholar 

  16. Li, T.S., Tong, S.C., Feng, G.: A novel robust adaptive-fuzzy- tracking control for a class of nonlinear multi-input/multi-output systems. IEEE Trans. Fuzzy Syst. 18(1), 150–160 (2010)

    Article  Google Scholar 

  17. Li, Y.M., Tong, S.C., Li, T.S.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybern. 45(1), 138–149 (2015)

    Article  Google Scholar 

  18. Chang, Y.H., Chan, W.S., Chang, C.W.: T-S fuzzy model-based adaptive dynamic surface control for ball and beam system. IEEE Trans. Ind. Electron. 60(6), 2251–2263 (2013)

    Article  Google Scholar 

  19. Han, S.I., Lee, J.M.: Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Ind. Electron. 61(2), 1099–1112 (2014)

    Article  MathSciNet  Google Scholar 

  20. Bhat, S.P., Bernstein, D.A.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. A. C. 43(5), 678–682 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bhat, S.P., Bernstein, D.A.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem”. IEEE Trans. A. C. 46(2), 305–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ge, S.S., Wang, C.: Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans. Neural Net. 15(3), 674–692 (2004)

    Article  Google Scholar 

  25. Zhang, T., Ge, S.S.: Adaptive neural network tacking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Net. 20(3), 674–692 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government(MSIP) (NRF-2013R1A1A2021174)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang Myung Lee.

Appendix

Appendix

Consider the following Lyapunov function:

$$ V_{s} = \sum\limits_{{i = 1}}^{m} {\sum\limits_{{j = 1}}^{{n_{i} }} {V_{{si,j}} } } $$
(61)
$$ {V_{s_{i,j}} = \frac{1}{2}s_{i,j}^{2}}. $$
(62)

By differentiating (52) with respect to time, and substituting the previous results, we obtain the following:

$$ \begin{aligned} {\dot{V}}_{\rm s} & < -\sum\limits_{i = 1}^{\rm m} \left(\sum\limits_{j = 1}^{n_{i}} {(k_{i,j} - 2)s_{i,j}^{2}} + \sum\limits_{j = 1}^{n_{i}} \left|{G_{i,j} ({\bar{x}}_{i,j})} \right|c_{i,j} s_{i,j} s_{i,j}^{\gamma_{i,j}} \right) + \frac{1}{4}\sum\limits_{i = 1}^{\rm m} \sum\limits_{j = 1}^{n_{i}} \left\| {\tilde{W}}_{Mi,n_{i} }^{\text{T}} \chi_{i,n_{i}} \right\|_{\rm max}^{2}\\ &\quad + \frac{1}{4}\sum\limits_{i = 1}^{\rm m} \sum\limits_{j = 1}^{n_{i}} \left\| {\tilde{\rho}}_{i,j} \right\|_{\rm max}^{2} \le - \sum\limits_{i = 1}^{\rm m} \left({S_{i}^{\text{T}}} K_{i} S_{i} + S_{i}^{\text{T}} \zeta_{i} S_{i}^{\gamma_{i} } \right) + \sum\limits_{i = 1}^{\rm m} {\mu_{s_i} } \\ \end{aligned} , $$
(63)

where \( S_{i} = [s_{i,1}, s_{i,2}, \ldots, s_{i,n_{i}}]^{\text{T}}, \quad K_{i} = {\text{diag}}(k_{i,1} - 2, k_{i,2} - 2, \ldots, k_{i,n_{i}} - 2), \quad k_{i,j} >2 \), for \( i = 1, \ldots, m, \quad j = 1, \ldots, n_{i}, \zeta_{i} = {\text{diag}} \left(c_{i,1} \left|{G_{i,1}} \right|c_{i,2} \left|{G_{i,2} } \right|, \ldots ,c_{i,n_{i}} \left|{G_{i,n_{i}}} \right| \right) \), \( {\tilde{W}}_{Mi} = \left[{\tilde{W}}_{Mi,1}, {\tilde{W}}_{Mi,2}, \ldots, {\tilde{W}}_{Mi,n_{i}} \right]^{\text{T}}, \) \( \mu_{s_{i}} = \sum\limits_{j = 1}^{n_{i}} \left\|{\tilde{W}}_{Mi,n_{i}}^{\text{T}} \chi_{i,n_{i}}\right\|_{\max}^{2}/4 + \sum\limits_{j = 1}^{n_{i}}\left\|{\tilde{W}}_{Mi,n_{i}}^{\text{T}} \chi_{i,n_{i}}\right\|_{\max}^{2}/4,\,\chi_{i} = [\chi_{i,1},\chi_{i,2},\ldots\chi_{i,n_{i}}]^{\text{T}},\) and \( {\tilde{\rho}}_{i} = \left[{\tilde{\rho}}_{1} ,{\tilde{\rho}}_{2} , \ldots ,{\tilde{\rho}}_{n_{i}} \right]^{\text{T}} \). Using the notation [24]

$$ S_{i}^{\gamma_{i}} = \left[s_{i,1}^{\gamma_{i,1}}, s_{i,2}^{\gamma_{i,2}}, \ldots, s_{i,n_{i}}^{\gamma_{i,n_{i}}} \right]^{\text{T}} , $$
(64)

the following inequality is obtained as

$$ \begin{aligned} - S_{i}^{\text{T}} \zeta_{i} S_{i}^{\gamma_{i}} &= - \left[{s_{i,1} ,s_{i,2} , \ldots ,s_{i,n_{i}}} \right]\zeta_{i} \left[{s_{i,1}^{{\gamma_{i,1} }} ,s_{i,2}^{{\gamma_{i,2} }} , \ldots ,s_{{i,n_{i} }}^{{\gamma_{i,n_{i}}}}} \right]^{\text{T}} \\ & < - \lambda_{\rm min} (\zeta_{i} )\sum\limits_{j = 1}^{{n_{i} }} {s_{i,j}^{{\gamma_{i,j} + 1}} } \\ & = - \lambda_{\rm min} (\zeta_{i} )\sum\limits_{j = 1}^{{n_{i} }} {\left( {s_{i,j}^{2} } \right)^{{(r_{i,j} + 1)/2}} } \\ & = - \beta_{2i} V_{s_i}^{{(\gamma_{i} + 1)/2}} \end{aligned} , $$
(65)

where \( {\beta_{1i}} = {\lambda_{\rm min}} (K_{i}) \) and \( {\beta_{1i}} = {\lambda_{\rm min}} (K_{i}) \). Therefore, (52) can be written as

$$ {\dot{V}}_{s_i} < - \beta_{1i} V_{s_i} - \beta_{2_i} V_{s_i}^{(\gamma_{i} + 1)/2} + \mu_{s_i} . $$
(66)

Equation (66) can then be rewritten in the following two forms:

$${\dot{V}}_{s_i} + \left({\beta_{1i}} - \frac{\mu_{s_i}}{V_{s_i}} \right)V_{s_i} + {\beta_{2_i}} V_{s_i}^{(\gamma_{i} + 1)/2} < 0, $$
(67)
$$ {\dot{V}}_{s_i} + \beta_{1i} V_{s_i} + \left({\beta_{2i} - \frac{{\mu_{s_i} }}{{V_{s_i}^{{(\gamma_{i} + 1)/2}}}}} \right)V_{s_i}^{{(\gamma_{i} + 1)/2}} < 0 . $$
(68)

From (67) and (68), if \( \beta_{1i} \) and \( \beta_{2i} \) are selected such that \( \beta_{1i} > \mu_{s_{i} } /V_{s_{i} } \) and \( \beta_{2i} > \mu_{s_{i}} /Vs_{i}^{(\gamma_{i} + 1)/2} \), respectively, the finite-time stability is then guaranteed by Lemma 2, and the tracking errors will reach the regions \( \left\| {S_{i} } \right\| < \Delta = \min (\Delta_{1} ,\Delta_{2} ) \) of the neighborhood in S i  = 0 and

$$ \Delta_{1} < \sqrt{\frac{2\mu_{s_i}}{\beta_{1i}}} , $$
(69)
$$ {\Delta_{2}} < \left({\frac{2 \mu_{si}} {\beta_{2i}}} \right)^{1/({\gamma_{i}} + 1)} $$
(70)

in finite time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S.I., Ha, H. & Lee, J.M. Fuzzy Finite-Time Dynamic Surface Control for Nonlinear Large-Scale Systems. Int. J. Fuzzy Syst. 18, 570–584 (2016). https://doi.org/10.1007/s40815-015-0088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0088-2

Keywords

Navigation