Skip to main content

Advertisement

Log in

Hydrogeochemical assessment and modeling of groundwater processes and pollution: a case study of the Grombalia aquifer in Northeast Tunisia

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Groundwater in the Grombalia region often represents the main source of water, which is intensively exploited to meet the needs of human consumption and irrigation, threatening its quality. This study aims to assess the quality of groundwater in the Grombalia shallow aquifer, and to identify the hydrogeochemical processes controlling its mineralization, based on chemical analysis results of thirteen (13) groundwater samples taken in October 2020. The results show that the chemical element content of most groundwater samples exceeds WHO standards. Based on the abundance of cations and anions, the groundwater is characterized by a single hydrochemical facies (Cl–Ca–Mg), revealing the combination of natural and anthropogenic processes governing water chemistry in the study area. Multivariate statistical analysis, including principal component analysis, Pearson correlation and hierarchical cluster analysis, revealed the main processes controlling groundwater chemistry are agricultural activities and dissolution of evaporitic formations. Bivariate diagrams show that cation exchange reactions leading to the adsorption of Na+ into clay minerals and the simultaneous release of Ca2+ ions, as well as the dissolution of silicates, are also processes that influence groundwater chemistry. Finally, calculation of the nitrate pollution index (NPI) reveals that most groundwater samples are very heavily polluted (NPI > 3), which may be linked to anthropogenic activities, such as the return of irrigation water, as well as untreated urban waste. The suitability of groundwater for drinking was determined by using WHO guidelines and Water Quality Index (WQI) revealed the Grombalia aquifer have poor to very poorly quality water for drinking purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  • Abid K, Trabelsi R, Zouari K, Abidi B (2009) Hydrogeochemical characterization of the Continental Intercalaire aquifer (southern Tunisia). Hydrol Sci J 54:526–537. https://doi.org/10.1623/hysj.54.3.526

    Article  CAS  Google Scholar 

  • Abo R, Merkel BJ (2015) Water quality of the Helvetian and Eocene aquifers in Al Zerba catchment and southern parts of Al Qweek Valley, Aleppo basin, Syria. Sustain Water Resour Manag 1:189–211. https://doi.org/10.1007/s40899-015-0019-2

    Article  Google Scholar 

  • Adimalla N, Venkatayogi S (2018) Geochemical characterization and evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Basara, Telangana State, South India. Appl Water Sci 8:1–14. https://doi.org/10.1007/s13201-018-0682-1

    Article  ADS  CAS  Google Scholar 

  • Al-Aizari HS, Aslaou F, Al-Aizari AR, Al-Odayni AB, Al-Aizari AJM (2023) Evaluation of Groundwater Quality and Contamination Using the Groundwater Pollution Index (GPI), Nitrate Pollution Index (NPI), and GIS. Water 15(20):3701. https://doi.org/10.3390/w15203701

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) (1995) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association (APHA), Washington.

  • Amonovich M R, Ahror o‘g‘li N S, Hamza qizi S I (2023) Importance of water for living organisms and national economy, physical and chemical methods of wastewater treatment. Am int j hum soc humanities soc sci 9: 7-13

  • APHA (1995) Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association Inc., New York, Washington, p 1467p

    Google Scholar 

  • Bahir M, El Mountassir O, Ouazar D, Carreira P M (2021) Use of WQI and isotopes to assess groundwater quality of coastal aquifers (Essaouira, Morocco). In: Advances in Geoethics and Groundwater Management: Theory and Practice for a Sustainable Development: Proceedings of the 1st Congress on Geoethics and Groundwater Management (GEOETH&GWM'20), Porto, Portugal 2020. Springer International Publishing 251–255.

  • Bahrami M, Zarei AR, Rostami F (2020) Temporal and spatial assessment of groundwater contamination with nitrate by nitrate pollution index (NPI) and GIS (case study: Fasarud Plain, southern Iran). Environ Geochem. https://doi.org/10.1007/s10653-020-00546-x

    Article  Google Scholar 

  • Bahrami M, Zarei AR (2023) Assessment and modeling of groundwater quality for drinking, irrigation, and industrial purposes using water quality indices and GIS technique in fasarud aquifer (Iran). Modeling Earth Systems and Environment. 1–15. https://doi.org/10.1007/s40808-023-01725-2

  • Belhouchette H, Boughariou E, Larayedh O, Bouri S (2022) Groundwater quality evaluation and human health risks assessment using the WQI, NPI and HQnitrate models: case of the Sfax intermediate aquifer. Sahel Tunisia Environ Geochem Health 44:2629–2647. https://doi.org/10.1007/s10653-021-01053-3

    Article  CAS  PubMed  Google Scholar 

  • Ben Boubaker H (2016) L’eau en Tunisie : faut-il s’attendre au pire ? Policy paper. Bull. Cemi-eau-december 2016. Ceter.

  • Ben Hassen N, Khiari N, Chiron S, Chkirbene A, Khézami, F, Azouzi R, Hatira A, Khadhar S (2023) Risk assessment of trace metals using chemical speciation, bioavailability, and cluster analysis around wadi EL bey (Gulf of Tunis, Tunisia). Soil Sediment Contam 1–27. https://doi.org/10.1080/15320383.2023.2199090

  • Ben Moussa A, Bel Haj Salem S, Zouari K, Jlassi F (2010) Hydrochemical and isotopic investigation of the groundwater composition of an alluvial aquifer, Cap Bon Peninsula, Tunisia. Carbonates Evaporites 25:161–176. https://doi.org/10.1007/s13146-010-0020-7

    Article  CAS  Google Scholar 

  • Brantley S (2008) Kinetics of Mineral Dissolution. In: Brantley S., Kubicki J., White A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_5

  • Charfi S, Zouari K, Feki S, Mamic E (2012) Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis. Quat Int 302:199–209. https://doi.org/10.1016/j.quaint.2012.11.002

    Article  Google Scholar 

  • Charfi S, Trabelsi R, Zouari K, Chkir N, Charfi H, Rekaia M (2013) Isotopic and hydrochemical investigation of the Grombalia deep aquifer system, northeastern Tunisia. Carbonates Evaporites 28:281–295. https://doi.org/10.1007/s13146-012-0114-5

    Article  CAS  Google Scholar 

  • Chen J, Huang Q, Lin Y, Fang Y, Qian H, Liu R, Ma H (2019) Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region. Northwest China Water 11(1):96. https://doi.org/10.3390/w11010096

    Article  CAS  Google Scholar 

  • Chidambaram S, Prasanna MV, Karmegam U, Singaraja C, Pethaperumal S, Manivannan R et al (2011) Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region. India Front Earth Sci 5(2):197–206. https://doi.org/10.1007/s11707-011-0170-5

    Article  ADS  CAS  Google Scholar 

  • Chihi L (1995) Les fosses Neogenes à quaternaires de la Tunisie et de la mer pelagienne:leur etude structurale et leur signification dans le cadre geodynamique de la Mediterrannee centrale. Thése de doctorat : sciences geologiques. Faculté des sciences de tunis.

  • Dagnelie P (2003) Statistique theorique et appliquee, Tome 1 ; Statistique descriptive et bases de l’inférence statistique. Bruxelles, De Boeck, pp 517.

  • Das Kangabam R, Bhoominathan SD, Kanagaraj S, Govindaraju M (2017) Development of a water quality index (WQI) for the loktak lake in india. Appl Water Sci 7(6):2907–2918. https://doi.org/10.1007/s13201-017-0579-4

  • Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. Geol Soc India 47:179–188

    CAS  Google Scholar 

  • Dinka MO (2010) Analyzing the extents of Basaka lake expansion and soil and water quality status of Matahara irrigation scheme, Awash Basin (Ethiopia). PhD dissertation. University of Natural Resources and Applied Life Sciences, Vienna, Austria.

  • Drouiche A, Zahi F, Debieche T-H, Lekoui A, Mahdid S (2022) Assessment of surface water quality: a case of Jijel region. North-East Algeria Arab J Geosci 15:252. https://doi.org/10.1007/s12517-022-09458-9

    Article  CAS  Google Scholar 

  • Duraisamy S, Govindhaswamy V, Duraisamy K, Krishinaraj S, Balasubramanian A, Thirumalaisamy S (2019) Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environ Geochem Health 41:851–873. https://doi.org/10.1007/s10653-018-0183-z

    Article  CAS  PubMed  Google Scholar 

  • Elmejdoub N, Jedoui Y (2009) Pleistocene raised marine deposits of the Cap Bon peninsula (N–E Tunisia): Records of sea-level highstands, climatic changes and coastal uplift. Geomorphology 112:179–189. https://doi.org/10.1016/j.geomorph.2009.06.001

    Article  ADS  Google Scholar 

  • FAO (1985) Water Quality for Agriculture. Irrigation and Drainage; Food and Agriculture Organization: Rome, Italy, 1994.

  • Fisher RS, Mullican WF III (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5:4–16. https://doi.org/10.1007/s100400050102

    Article  ADS  Google Scholar 

  • García GM, Hidalgo DV, M, Blesa M A, (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol J 9:597–610. https://doi.org/10.1007/s10040-001-0166-4

    Article  ADS  Google Scholar 

  • Gasmi O, Louati M, Chekirbane A, Menchen A, Twihri A, Alday JJG, Mlayah A (2022) Assessment of groundwater quality and pesticide distribution in Mornag aquifer using GIS-based technique (Northeast Tunisia). Arab J Geosci 15:1042. https://doi.org/10.1007/s12517-022-10210-6

    Article  CAS  Google Scholar 

  • Green TR (2016) Linking Climate Change and Groundwater. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A (eds) Integrated Groundwater Management. Springer International Publishing, Cham, pp 97–141. https://doi.org/10.1007/978-3-319-23576-9_5

    Chapter  Google Scholar 

  • Hamed Y, Hadji R, Redhaounia B, Zighmi K, Bâali F, El Gayar A (2018) Climate impact on surface and groundwater in North Africa: a global synthesis of findings and recommendations. Euro-Mediterr J Environ Integr 3:1–15. https://doi.org/10.1007/s41207-018-0067-8

    Article  Google Scholar 

  • Hamzaoui-Azaza F, Ketata M, Bouhlila R, Gueddari M, Riberio L (2011) Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss-Koutine aquifer, southeastern Tunisia. Environ Monit Assess 174(1–4):283–298. https://doi.org/10.1007/s10661-010-1457-9

    Article  CAS  PubMed  Google Scholar 

  • Helstrup T, Jørgensen NO, Banoeng-Yakubo B (2007) Investigation of hydrochemical characteristics of groundwater from the Cretaceous-Eocene limestone aquifer in southern Ghana and southern Togo using hierarchical cluster analysis. Hydrogeol J 15:977–989. https://doi.org/10.1007/s10040-007-0165-1

    Article  ADS  CAS  Google Scholar 

  • INS (2020) National Institute of Statistics. Demographic and social data of Tunisia. http://www.ins.tn/.

  • Jagadeeswari PB, Ramesh K (2012) Water quality index for assessment of water quality in South Chennai coastal aquifer, Tamil Nadu. India Int J ChemTech Res 4(4):1582–1588

    Google Scholar 

  • Judran NH, Kumar A (2020) Evaluation of water quality of Al-Gharraf river using the water quality index (WQI). Model Earth Syst Environ 6(3):1581–1588. https://doi.org/10.1007/s40808-020-00775-0

    Article  Google Scholar 

  • Kadouche S, Hammoum H, Ghedamsi H, Si Tahar L (2018) Évaluation des performances épuratoires d’un bassin de filtration des eaux usées - étude de cas. J Water Sci 31(4):387–398. https://doi.org/10.7202/1055596ar

    Article  CAS  Google Scholar 

  • Kamaraj J, Sekar S, Roy PD, Senapathi V, Chung SY, Perumal M, Nath AV (2021) Groundwater pollution index (GPI) and GIS-based appraisal of groundwater quality for drinking and irrigation in coastal aquifers of Tiruchendur, South IndiaEnviron. Sci Pollut Res 28:29056–29074. https://doi.org/10.1007/s11356-021-12702-6

    Article  CAS  Google Scholar 

  • Kammoun S, Trabelsi R, Re V, Zouari K, Henchiri J (2018) Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia). Environ Monit Assess 190:1–22. https://doi.org/10.1007/s10661-018-6469-x

    Article  CAS  Google Scholar 

  • Kathiravan K, Natesan U, Vishnunath R (2019) Developing GIS based coastal water quality index for Rameswaram Island, India positioned in Gulf of Mannar marine biosphere reserve. Modeling Earth Systems and Environment 5:1519–1528. https://doi.org/10.1007/s40808-019-00656-1

    Article  Google Scholar 

  • Khadhar S, Achour D, Chekirben A, Chawachi R, Mlayah A, Charef A (2018) Sediment-water column exchange of persistent organic pollutants (PAHs and PCBs) and their transport vector in El Bey watershed, Tunisia. Arab J Geosci 11:1–9. https://doi.org/10.1007/s12517-018-3851-5

    Article  Google Scholar 

  • Lachaal F, Chekirbane A, Chargui S, Sellami H, Tsujimura M, Hezzi H, Mlayah A (2016) Water resources management strategies and its implications on hydrodynamic and hydrochemical changes of costal groundwater: case of Grombalia shallow aquifer, NE Tunisia. J African Earth Sci 124:171–188. https://doi.org/10.1016/j.jafrearsci.2016.09.024

    Article  ADS  CAS  Google Scholar 

  • Lachaal F, Messaoud RB, Jellalia D, Chargui S, Chekirbane A, Mlayah A, Leduc C (2018) Impact of water resources management on groundwater hydrochemical changes: case of Grombalia shallow aquifer. NE of Tunisia Arab J Geosci 11:15. https://doi.org/10.1007/s12517-018-3656-6

    Article  CAS  Google Scholar 

  • Lal B, Nayak V, Shukla A K, Kumar P (2022) Hydro-geochemistry and irrigation water quality of groundwater in Chhattisgarh plain central India. https://doi.org/10.21203/rs.3.rs-2045295/v1

  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Expos Health 8:331–348. https://doi.org/10.1007/s12403-016-0193-y

    Article  CAS  Google Scholar 

  • Liu F, Zhao Z, Yang L, Ma Y, Xu Y, Gong L, Liu H (2020) Geochemical characterization of shallow groundwater using multivariate statistical analysis and geochemical modeling in an irrigated region along the upper Yellow River. Northwestern China J Geochem Explor 215:106565. https://doi.org/10.1016/j.gexplo.2020.106565

    Article  CAS  Google Scholar 

  • Madhav S, Ahamad A, Kumar A, Kushawaha J, Singh P, Mishra PK (2018) Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi). Uttar Pradesh Geol Ecol Landsc 2:127–136. https://doi.org/10.1080/24749508.2018.1452485

    Article  Google Scholar 

  • McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In Groundwater: past achievements and future challenges pp. 567–573.

  • Meena PL (2022) Study on the Hydrogeochemical Processes Regulating the Groundwater Chemistry in the Southeast Rajasthan. J Geol Soc India 98:1455–1465. https://doi.org/10.1007/s12594-022-2193-9

    Article  CAS  Google Scholar 

  • Mlayah A, Lachaal F, Khadhar S, Charef A, Noronnha F (2017) The fate of metals in the environment and waters quality in the Mellegue watercourse, Northwest Tunisia. Mine Water Environ 36:163–179. https://doi.org/10.1007/s10230-017-0430-z

    Article  ADS  CAS  Google Scholar 

  • Mohammed EA, Aref L, Nassir A, Abdulaziz A (2015) Groundwater characteristics and pollution assessment using integrated hydrochemical investigations GIS and multivariate geostatistical techniques in arid areas. Water Resour Managmt 29:5593–5612. https://doi.org/10.1007/s11269-015-1136-2

    Article  Google Scholar 

  • El Mountassir O, Bahir M, Ouazar D, Chehbouni A, Carreira P M (2022) Temporal and spatial assessment of groundwater contamination with nitrate using nitrate pollution index (NPI), groundwater pollution index (GPI), and GIS (case study: Essaouira basin, Morocco). Environ Sci Pollut Res 1–18. https://doi.org/10.1007/s11356-021-16922-8

  • Nag SK, Das S (2017) Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India. Appl Water Sci 7:2787–2802. https://doi.org/10.1007/s13201-017-0530-8

    Article  ADS  CAS  Google Scholar 

  • Nazzal YH, Al-Arifi N, Zumlot T, Kishawy H (2014) Statistical characterization of the hydrochemical data’s of groundwater in the arid land of Wadi AdDawasir area, Saudi Arabia: a probabilistic assessment. Geol Croat 67:207–216. https://doi.org/10.4154/GC.2014.15

    Article  CAS  Google Scholar 

  • N'guessan Y M, Wango T E, Adopo K L, Probst J L, Probst A (2016) Caractéristiques géochimiques des eaux de surface dans un environnement agricole: cas des bassins versants de la Gascogne (Région Midi Pyrénées, SW de la France). International Journal of Innovation and Applied Studies17(2), 394-406

  • Obeidat M M, Al-Ajlouni A, Al-Rub F A, Awawdeh M (2012) An innovative nitrate pollution index and multivariate statistical investigations of groundwater chemical quality of Umm Rijam Aquifer (B4), North Yarmouk River Basin, Jordan,” Chapters, in: Konstantinos (Kostas) of Mediterranean and International Studies. Konrad Adenauer Stiftung. pp 12.

  • Paliwal K, Karunaichamy KSTK, Ananthavalli M (1998) Effect of sewage water irrigation on growth performance, biomass and nutrient accumulation in Hardwickia binata under nursery conditions. Bioresour Technol 66:105–111. https://doi.org/10.1016/S0960-8524(98)00044-3

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Res Investig Rep 99:312

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Srinivasamoorthy K, Anandhan P, John Peter A (2006) A study on hydrogeochemisty along the groundwater flow path is different litho units in Gadilam river basin, Tamilnadu (India). J Ultra Chem 2:2157–17210

    Google Scholar 

  • Qasemi M, Shams M, Sajjadi SA, Farhang M, Erfanpoor S et al (2019) Cadmium in groundwater consumed in the rural areas of Gonabad and Bajestan, Iran: occurrence and health risk assessment. Biol Trace Elem Res 192:106–115. https://doi.org/10.1007/s12011-019-1660-7

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Li P, Howard KW, Yang C, Zhang X (2012) Assessment of groundwater vulnerability in the Yinchuan Plain, Northwest China using OREADIC. Environ Monit Assess 184:3613–3628. https://doi.org/10.1007/s10661-011-2211-7

    Article  CAS  PubMed  Google Scholar 

  • Rajmohan N, Elango LJEG (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61. https://doi.org/10.1007/s00254-004-1012-5

    Article  CAS  Google Scholar 

  • Redwan M, Moneim A. A. A, Mohammed N. E, Masoud A. M (2020) Sources and health risk assessments of nitrate in groundwater, West of Tahta area, Sohag, Egypt. Episodes 1:1–10. https://doi.org/10.18814/epiiugs/2020/020048

  • Ricolfi L, Barbieri M, Muteto PV, Nigro A, Sappa G, Vitale S (2020) Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ Geochem Health 42:2733–2745. https://doi.org/10.1007/s10653-019-00507-z

    Article  CAS  PubMed  Google Scholar 

  • Roy B, Pramanik M, Manna AK (2023) Hydrogeochemistry and quality evaluation of groundwater and its impact on human health in North Tripura. India Environ Monit Assess 195:39. https://doi.org/10.1007/s10661-022-10642-3

    Article  CAS  Google Scholar 

  • Schoeller H (1977) Geochemistry of groundwater. Groundwater studies, an international guide for research and practice, UNESCO, Paris, pp 1–18.

  • Sebei A, Chaabani F, Souissi F, Abdeljaoued S (2004) Hydrologie et qualité des eaux de la nappe de Grombalia (Tunisie nord-orientale). Science Et Changements Planétaires / Sécheresse 15(2):159–166

    Google Scholar 

  • Sonkamble S, Sahya A, Mondal NC, Harikumar P (2012) Appraisal and evolution of hydrochemical processes from proximity basalt and granite areas of Deccan Volcanic Province (DVP) in India. J Hydrol 438:181–193. https://doi.org/10.1016/j.jhydrol.2012.03.022

    Article  CAS  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. https://doi.org/10.1007/s10040-001-0170-8

    Article  ADS  CAS  Google Scholar 

  • Subba Rao N (2012) PIG: a numerical index for dissemination of groundwater contamination zones. Hydrol Process 26:3344–3350. https://doi.org/10.1002/hyp.8456

    Article  ADS  CAS  Google Scholar 

  • Taşan M, Demir Y, Taşan S (2022) Groundwater quality assessment using principal component analysis and hierarchical cluster analysis in Alaçam, Turkey. Water Supply 22:3431–3447. https://doi.org/10.2166/ws.2021.390

    Article  CAS  Google Scholar 

  • Vadde KK, Wang J, Cao L, Yuan T, McCarthy AJ, Sekar R (2018) Assessment of water quality and identification of pollution risk locations in Tiaoxi River (Taihu Watershed). China Water 10(2):183. https://doi.org/10.3390/w10020183

    Article  CAS  Google Scholar 

  • Wagh VM, Panaskar DB, Muley AA, Mukate SV (2017) Groundwater suitability evaluation by CCME WQI model for Kadava river basin, Nashik, Maharashtra. India Model Earth Syst Environ 3:557–565. https://doi.org/10.1007/s40808-017-0316-x

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. https://doi.org/10.1080/01621459.1963.10500845

    Article  MathSciNet  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. Switzerland, WHO Press, Geneva

    Google Scholar 

  • Winter CT (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45. https://doi.org/10.1007/s100400050178

    Article  ADS  Google Scholar 

  • Wu C, Wu X, Lu C, Sun Q, He X, Yan L, Qin T (2021) Hydrogeochemical characterization and its seasonal changes of groundwater based on self-organizing maps. Water 13(21):3065

    Article  CAS  Google Scholar 

  • Xu P, Feng W, Qian H, Zhang Q (2019) Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central-Western Guanzhong Basin, China. Int J Environ Res Public Health 16(9):1492. https://doi.org/10.3390/Ijerph16091492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamili H, Bakan G, Zubaidi SL, Alawsi MA (2023) Water quality index forecast using artificial neural network techniques optimized with different metaheuristic algorithms. Modeling Earth Systems and Environment, 1–11. https://doi.org/10.1007/s40808-023-01750-1

  • Zhang X, Wu J, Song B (2011) Application of principal component analysis in groundwater quality assessment. In 2011 International Symposium on Water Resource and Environmental Protection 3: 2080–2083. https://doi.org/10.1109/ISWREP.2011.5893671

Download references

Acknowledgements

This research was supported by INWAT project, PRIMA section 2.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Khadhar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

khezami, F., Khiari, N., Drouiche, A. et al. Hydrogeochemical assessment and modeling of groundwater processes and pollution: a case study of the Grombalia aquifer in Northeast Tunisia. Model. Earth Syst. Environ. (2024). https://doi.org/10.1007/s40808-024-01968-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40808-024-01968-7

Keywords

Navigation