Skip to main content

Advertisement

Log in

Habitat suitability modeling for the conservation and cultivation of the multipurpose fruit tree, Balanites aegyptiaca L., in the Republic of Chad, Sahel

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Balanites aegyptiaca, a key agroforestry species, is being overexploited in the Sahel due to increasing market demand for its derived products. The present study aims to model the potential current distribution of B. aegyptiaca and to assess the potential impact of the future climate (at 2055 and 2085 time horizons) on the species distribution in Chad to identify suitable areas for its further domestication. The principle of maximum entropy (MaxEnt) was used. Species occurrence data combined with bioclimatic data from the AFRICLIM database resulted in ten reduced general circulation models (GCMs) using five regional climate models (RCMs) under the RCP8.5 scenario. The results showed that the rainiest month (BIO13) and the number of dry months (dm) contributed the most to the models' prediction. GCM and RCM models predicted a slight decrease (22.8%) by 2055 and a significant increase (92%) by 2085 in the extent of suitable areas for B. aegyptiaca cultivation. Thereafter, a slight decrease (27.8%) by 2055 and a relatively large extension (56.40%) by 2085 in the extent of suitable areas for its conservation through protected areas were noted. Our findings revealed the conversion of parts of unsuitable areas for the species cultivation and conservation into very suitable areas by 2085. This suggests that further domestication of B. aegyptiaca will be possible over a large part of Chad (46%) in the context of changing climates. These findings should support policy-makers in making reliable decisions toward sustainable management of desert date in the Sahel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the present study are available from the authors upon request.

References

  • Abdoulaye B, Bechir AB, Mapongmetsem PM (2017) Utilités socioéconomiques et culturelles du Balanites aegyptiaca (L.) Del. (Famille Zygophyllaceae) chez les populations locales de la Région du Ouaddaï au Tchad. J Appl Biosci 111:10854–10866. https://doi.org/10.4314/jab.v111i1.2

    Article  Google Scholar 

  • Alhassane A, Salack S, Ly M et al (2013) Évolution des risques agroclimatiques associés aux tendances récentes du régime pluviométrique en Afrique de l’Ouest soudano-sahélienne. Science Et Changements Planétaires/ Sécheresse 24:282–293. https://doi.org/10.1684/sec.2013.0400

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.012014.x

    Article  Google Scholar 

  • Arbonnier M (2009) Arbres, arbustes et lianes des zones sèches d’Afrique de l’Ouest. Editions Quae

  • Asseh EE, Ake-Assi E, Koffi KJ (2019) Diversité biologique et influence des changements climatiques sur la distribution géographique de quelques espèces d’Acanthaceae en Côte d’Ivoire. Int J Biol Chem Sci 13:676–692. https://doi.org/10.4314/ijbcs.v13i2.9

    Article  Google Scholar 

  • Assogba D, Idohou R, Chirwa P, Assogbadjo AE (2022) On opportunities and challenges to conserve the African baobab under present and future climates in Benin (West Africa). J Arid Environ 198:104692. https://doi.org/10.1016/j.jaridenv.2021.104692

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030

    Article  Google Scholar 

  • Belle EMS, Burgess ND, Misrachi M, et al. (2016) Impacts du changement climatique sur la biodiversité et les aires protégées en Afrique de l’Ouest, Résumé des résultats du projet PARCC, Aires protégées résilientes au changement climatique en Afrique de l’Ouest. UNEP-WCMC, Cambridge, UK

  • Boko M (2007) Climate change: Impacts, vulnerabilities, and adaptation in developing countries. Climate Change 2007: Impacts, Adaptation and Vulnerability The Working Group II Contribution to the IPCC Fourth Assessment Report 433–467

  • Bouguerra A (1994) Le balanites, l’arbre intelligent du Sahel, Courrier International, 1994/09/22. accès en ligne 6/06/2020

  • Bouko BS, Dossou PJ, Amadou B, Sinsin B (2016) Exploitation des ressour ces biologiques et dynamique de la foret classee de la Mekrou au Bénin. Eur Sci J. https://doi.org/10.19044/esj.2016.v12n36p228

    Article  Google Scholar 

  • Boulanodji E (2014) Analyse et compréhension des liens existant entre le changement climatique, les aires protégées et les communautés au Tchad. La Tribune 30

  • Brotons L, Cáceres MD, Fall A, Fortin M-J (2012) Modeling bird species distribution change in fire prone Mediterranean landscapes: incorporating species dispersal and landscape dynamics. Ecography 35:458–467. https://doi.org/10.1111/j.1600-0587.2011.06878.x

    Article  Google Scholar 

  • Brown JL (2014) SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  • Bush ER, Whytock RC, Bourgeois S et al (2020) Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370:1219–1222. https://doi.org/10.1126/science.abc7791

    Article  Google Scholar 

  • Chothani DL, Vaghasiya HU (2011) A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn Rev 5:55. https://doi.org/10.4103/0973-7847.79100

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, et al. (2007) Regional climate projections. In: Climate Change, 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, University Press, Cambridge, Chapter 11. pp 847–940

  • Creac’h P, (1940) Le Balanites ægyptiaca. Ses multiples applications au Tchad. Journal D’agriculture Traditionnelle Et De Botanique Appliquée 20:578–593. https://doi.org/10.3406/jatba.1940.1576

    Article  Google Scholar 

  • Cuni-Sanchez A, Osborne PE, Haq N (2010) Identifying the global potential for baobab tree cultivation using ecological niche modelling. Agrofor Syst 80:191–201. https://doi.org/10.1007/s10457-010-9282-2

    Article  Google Scholar 

  • Depierre D, Gillet H (1991) L’arbre désertique source de vie. Bois & Forêts des Tropiques 227:43–50. https://doi.org/10.19182/bft1991.227.a19714

  • Dimobe K, Ouédraogo A, Ouédraogo K, et al. (2020) Climate change reduces the distribution area of the shea tree (Vitellaria paradoxa CF Gaertn.) in Burkina Faso. J Arid Environ 181:104237. https://doi.org/10.1016/j.jaridenv.2020.104237

  • Djotan AKG, Aoudji AKN, Codjia SAF et al (2018a) How far can climate changes help to conserve and restore Garcinia kola Heckel, an extinct species in the wild in Benin (West Africa). Int J Biodivers Conserv 10:203–213. https://doi.org/10.5897/IJBC2018.1180

    Article  Google Scholar 

  • Djotan AKG, Aoudji AKN, Tessi DRY et al (2018b) Vulnerability of Khaya senegalensis Desr & Juss to climate change and to the invasion of Hypsipyla robusta Moore in Benin (West Africa). Int J Biol Chem Sci 12:24–42. https://doi.org/10.4314/ijbcs.v12i1.3

    Article  Google Scholar 

  • Dubey PK, Yogi M, Bharadwaj A et al (2011) Balanites aegyptiaca (L.) Del., a semi-arid forest tree: a review. Acad J Plant Sci 4:12–18

    Google Scholar 

  • Elfeel AA (2010) Variability in Balanites aegyptiaca var. aegyptiaca seed kernel oil, protein and minerals contents between and within locations. Agric Biol J N Am 1:170–174

    Google Scholar 

  • Elfeel AA, Warrag EI (2011) Uses and conservation status of Balanites aegyptiaca (L.) Del. (Hegleig Tree) in Sudan: Local people perspective. Asian J Agric Sci 3:286–290

    Google Scholar 

  • Elith J, Graham HC, Anderson PR et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Engler R, Guisan A (2009) MigClim: Predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601. https://doi.org/10.1111/j.1472-4642.2009.00566.x

    Article  Google Scholar 

  • Fandohan B, Gouwakinnou GN, Fonton NH et al. (2013) Impact des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. BASE. https://popups.uliege.be/1780-4507/index.php?id=10186

  • FAO, IIASA, ISRIC, ISSCAS, JRC, 2012. Harmonized world soil database (version 1.2). Food and Agriculture Organization of the United Nations, International Institute for Applied Systems Analysis. ISRIC — World Soil Information, Institute of Soil Science — Chinese Academy of Sciences, Joint Research Centre of the European Commission, Laxenburg

  • Fithian W, Hastie T (2013) Finite-sample equivalence in statistical models for presence-only data. Ann Appl Stat 7:1917–1939. https://doi.org/10.1214/13-AOAS667

    Article  Google Scholar 

  • Frenken K (2005) Irrigation En Afrique En Chiffre Enquete Aquastat 2005. Food & Agriculture Organization. http://www.fao.org

  • Gardette J-L, Baba M (2013) FTIR and DSC studies of the thermal and photochemical stability of Balanites aegyptiaca oil (Toogga oil). Chem Phys Lipid 170:1–7. https://doi.org/10.1016/j.chemphyslip.2013.02.008

    Article  Google Scholar 

  • Gbètoho AJ, Aoudji AK, Roxburgh L, Ganglo JC (2017) Assessing the suitability of pioneer species for secondary forest restoration in Benin in the context of global climate change. Bois & Forêts des Tropiques 332:43–55. https://doi.org/10.19182/bft2017.332.a31332

  • Gouwakinnou NG (2011) Population Ecology, Uses and Conservation of Sclerocarya birrea (A. Rich) Hocchst. (Anacardiaceae) in Benin, West Africa. PhD Thesis, Ph. D. Thesis, University of Abomey-Calavi, Abomey-Calavi, 176

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. Cambridge University Press

    Book  Google Scholar 

  • Habou KMA, Abdou L, Rabiou H, Mahamane A (2021) Impact des changements climatiques sur la dynamique de l’habitat potentiel de Balanites aegyptiaca (L.) Del. au Niger. Revue Marocaine des Sciences Agronomiques et Vétérinaires 9:

  • Hallegatte S (2016) Shock waves: managing the impacts of climate change on poverty. World Bank Publications

  • Hounsou-Dindin G, Idohou R, Akakpo AD, Adome N, Adomou AC, Assogbadjo AE, Glèlè Kakaï R (2022) Assessment of wild oil plants diversity and prioritization for valorization in Benin (West Africa): a multivariate approach. Trees Forest People. https://doi.org/10.1016/j.tfp.2022.100210

    Article  Google Scholar 

  • Idrissa B, Soumana I, Issiaka Y et al (2018) Trend and Structure of Populations of Balanites aegyptiaca in Parkland Agroforests in Western Niger. Annu Res Rev Biol. https://doi.org/10.9734/ARRB/2018/38650

    Article  Google Scholar 

  • Imorou IT (2020) Spatial distribution and ecological niche modelling of Triplochiton scleroxylon K. Schum., in the Guineo-Congolese region of Benin (West Africa). Int J Biol Chem Sci 14:32–44. https://doi.org/10.4314/ijbcs.v14i1.4

    Article  Google Scholar 

  • IPCC (2013) Climate change : the scientific elements. Contribution of Working Group I to the 5th IPCC assessment report. Cambridge University Press, Cambridge

  • IPCC (2018) Global Warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge, UK, Cambridge University Press, 562 p. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/07/SR15_SPM_High_Res.pdf

  • Kabo KS, Ali T, Ogbesejana AB (2020) Extraction and physico-chemical parameter analysis of desert date (Balanites aegyptiaca) oil from Dutsin-Ma. Fudma J Sci 4:409–413

    Article  Google Scholar 

  • Kaboré-Zoungrana C, Diarra B, Adandedjan C, Savadogo S (2008) Valeur nutritive de Balanites aegyptiaca pour l’alimentation des ruminants. Livest Res Rural Dev 20:2008

    Google Scholar 

  • Khatoon R, Jahan N, Ahmad S, Shahzad A (2013) Antifungal activity of aerial parts as well as in vitro raised calli of the medicinal plant, Balanites aegyptiaca Del. Afr J Plant Sci 7:476–481. https://doi.org/10.7324/JAPS.2014.40121

    Article  Google Scholar 

  • Koko SE, Talib MA, Elfatih F et al (2017) Antioxidant activity and phytochemical screening of Balanites aegyptiaca fruits. World J Pharm Med Res 3:47–50

    Google Scholar 

  • Leriche A, Saatkamp A, Beaume S, Guende G (2010) Distribution et écologie de la Garidelle fausse nigelle. Courrier scientifique du Parc naturel régional du Luberon et de la Réserve de biosphère Luberon-Lure, 60–73

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Lohlum SA, Forcados EG, Agida OG et al (2012) Enhancing the chemical composition of Balanites aegyptiaca seeds through ethanol extraction for use as a protein source in feed formulation. Sustain Agric Res 1:251. https://doi.org/10.5539/sar.v1n2p251

    Article  Google Scholar 

  • Ly M, Traore SB, Alhassane A, Sarr B (2013) Evolution of some observed climate extremes in the West African Sahel. Weather Clim Extremes 1:19–25. https://doi.org/10.1016/j.wace.2013.07.005

    Article  Google Scholar 

  • Makalao MM, Savadogo A, Zongo C, Traore AS (2015) Composition nutritionnelle de 10 fruits sauvages consommés dans trois départements du Tchad. Int J Biol Chem Sci 9:2385–2400. https://doi.org/10.4314/ijbcs.v9i5.11

    Article  Google Scholar 

  • Mansourian S, Belokurov A, Stephenson PJ (2009) Rôle des aires protégées forestières dans l’adaptation aux changements climatiques. Unasylva 60:231–232

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

  • Montasser AO, Saleh H, Ahmed-Farid OA et al (2017) Protective effects of Balanites aegyptiaca extract, Melatonin and Ursodeoxycholic acid against hepatotoxicity induced by Methotrexate in male rats. Asian Pac J Trop Med 10:557–565. https://doi.org/10.1016/j.apjtm.2017.06.003

    Article  Google Scholar 

  • Moukrim S, Lahssini S, Alaoui HM et al (2018) Modélisation de la distribution spatiale des espèces endémiques pour leur conservation : cas de l’Argania spinosa (L.) Skeels. Revue d’Ecologie, Terre et Vie 73:153–166. HAL Id : hal-03532905, version 1

  • Nakao K, Matsui T, Horikawa M et al (2011) Assessing the impact of land use and climate change on the evergreen broad-leaved species of Quercus acuta in Japan. Plant Ecol 212:229–243. https://doi.org/10.1007/811258-010-9817-7

    Article  Google Scholar 

  • Ngaryam B (2016) La problématique de gestion durable de la biodiversité au Tchad: impacts des aires protégées sur les zones périphériques-cas des parcs nationaux de Manda et Sena Oura. PhD Thesis, Paris 8

  • Novidzro KM, Fagla BA, Houndji BS, et al. (2019) Balanites aegyptiaca Fruits’ Valorization by Liquid Biofuels Production. Am J Chem Eng 7:102–112. https://doi.org/10.11648/j.ajche.20190704.11

  • Obidah W, Nadro MS, Tiyafo GO, Wurochekke AU (2009) Toxicity of crude Balanites aegyptiaca seed oil in rats. J Am Sci 5:13–16

    Google Scholar 

  • Okia CA, Agea JG, Kimondo JM et al (2011) Use and Management of Balanites aegyptiaca in Drylands of Uganda. Res J Biol Sci 6:15–24. https://doi.org/10.3923/rjbsci.2011.15.24

    Article  Google Scholar 

  • Okia CA, Kwetegyeka J, Okiror P et al (2013) Physico-chemical characteristics and fatty acid profile of desert date kernel oil in Uganda. Afr Crop Sci J 21:723–734

    Google Scholar 

  • Padalia H, Srivastava V, Kushwaha SPS (2014) Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol Inf 22:36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M et al (2017) Opening the black box: An open-source release of Maxent. Ecography 40:887–893. https://doi.org/10.1111/ecog.03049

    Article  Google Scholar 

  • Platts PJ, Omeny PA, Marchant R (2015) AFRICLIM: high-resolution climate projections for ecological applications in Africa. Afr J Ecol 53:103–108. https://doi.org/10.1111/aje.12180

    Article  Google Scholar 

  • Poilecot P, Boulanodji É, Taloua N et al. (2007) Parc national de Zakouma: des éléphants et des arbres. Bois & Forêts des Tropiques 291:13–24. https://doi.org/10.19182/bft2007.291.a20353

  • Rifai N, Moukrim S, Khattabi A, et al (2020) Prédiction de l’aire potentielle de répartition du genévrier thurifère (Juniperus thurifera) au Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires 8:

  • Sarr B, Atta S, Ly M, Salack S (2015) Adapting to climate variability and change in smallholder farming communities: A case study from Burkina Faso, Chad and Niger. J Agric Extension Rural Dev 7:16–27. 5897/JAERD14.0595

  • Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Cons 155:149–156. https://doi.org/10.1016/j.biocon.2012.06.011

    Article  Google Scholar 

  • Sharma P, Saini MK, Prasad J, Gour VS (2019) Evaluation of robustness of the biosurfactant derived from Balanites aegyptiaca (L.) Del. J Surfactants Deterg 22:403–408. https://doi.org/10.1002/jsde.12249

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

    Article  Google Scholar 

  • Tayeau F, Faure F, Séchet-Sirat J (1955) Étude sur le Soumpe (Balanites aegyptiaca). Valeur alimentaire de ses protéines. Journal D’agriculture Traditionnelle Et De Botanique Appliquée 2:40–49

    Article  Google Scholar 

  • Tshwene-Mauchaza B, Aguirre-Gutiérrez J (2019) Climatic drivers of plant species distributions across spatial grains in Southern Africa tropical forests. Front for Glob Chang. https://doi.org/10.3389/ffgc.2019.00069

    Article  Google Scholar 

  • Vale CG, Tarroso P, Brito JC (2014) Predicting species distribution at range margins: testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Divers Distrib 20:20–33. https://doi.org/10.1111/ddi.12115

    Article  Google Scholar 

  • Van Zonneveld M, Koskela J, Vinceti B, Jarvis A (2009) Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 60:24–28

    Google Scholar 

  • Variawa T (2017) Modeling the environmental niche of a South African fynbos endemic tree aloe, kumara plicatilis, and predicting impacts of climate change on the species’ distribution. PhD Thesis

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342. https://doi.org/10.1890/10-1171.1

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. https://doi.org/10.1111/j.1600-0587.2009.06142

    Article  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD et al (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

    Article  Google Scholar 

  • Wouyou HG, Lokonon BE, Idohou R, Zossou-Akete AG, Assogbadjo AE, Glèlè Kakaï, R (2022). Predicting the potential impacts of climate change on the endangered Caesalpinia bonduc (L.) Roxb in Benin (West Africa). Heliyon, e09022

  • Zurell D (2017) Integrating demography, dispersal and interspecific interactions into bird distribution models. J Avian Biol 48:1505–1516. https://doi.org/10.1111/jav.01225

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to all data providers. Idohou R. acknowledges the support from the Rufford Grant (Grant Number 31042-D) which enabled collaboration on the current project.

Funding

This study was partly supported by the Faculty of Agronomic Sciences of the University of Sarh (Chad).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Chérif AA, Sodé AI, Houndonougbo JSH and Fandohan AB. The first draft of the manuscript was written by Chérif AA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. S. H. Houndonougbo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code availability

'Not applicable' for that section.

Additional declarations

Not applicable.

Ethics approval

The authors confirm that this work has neither been published in a journal nor under consideration by another journal. All authors attest that they have read the manuscript, approve the validity and legitimacy of the data and its interpretation, and thereafter agree to its submission to Modeling Earth Systems and Environment for possible consideration.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chérif, A.A., Sodé, A.I., Houndonougbo, J.S.H. et al. Habitat suitability modeling for the conservation and cultivation of the multipurpose fruit tree, Balanites aegyptiaca L., in the Republic of Chad, Sahel. Model. Earth Syst. Environ. 8, 4953–4963 (2022). https://doi.org/10.1007/s40808-022-01416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01416-4

Keywords

Navigation