Skip to main content
Log in

PM2.5 concentration modeling and mapping in the urban areas

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The aim of our study was to compare and evaluate four models by which the ground-level PM2.5 concentrations in the urban area are predicted. These are ordinary kriging (OK), universal kriging (UK), inverse distance weighting (IDW), and multi-layer perceptron (MLP). Root mean square error (RMSE) and standard deviation (SD) were used to select semi-variogram and the transformation type of renormalized data in kriging models. The spherical semi-variogram, Box-Cox with the power parameter equal to one, and first order trend of removal were used to run OK and UK models. In the IDW method, the weighing was conducted according to the distance between points and the measurement station. The trial and error method along with a coefficient of determination (R2) and the lowest root mean square error (RMSE) values were used to obtain the optimum model in MLP approach. Regarding the mapping, the nearest area to main roads showed generally the highest annual average concentrations of PM2.5. Based on the RMSE and R2 of models, the order of fitted models of PM2.5 concentrations in the air from the best to worst was as follows: MLP > OK > UK > IDW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Wahab SA, Al-Alawi SM (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Softw 17:219–228

    Article  Google Scholar 

  • Adams MD, Kanaroglou PS (2016) Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. J Environ Manage 168:133–141. https://doi.org/10.1016/j.jenvman.2015.12.012

    Article  Google Scholar 

  • Alahabadi A, Rezai Z, Rahmani-Sani A, Rastegar A, Hosseini-Bandegharaei A, Gholizadeh A (2016) Efficacy evaluation of NH4Cl-induced activated carbon in removal of aniline from aqueous solutions and comparing its performance with commercial activated carbon. Desalination Water Treat 57:23779–23789. https://doi.org/10.1080/19443994.2015.1134356

    Article  Google Scholar 

  • Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22:795–799. https://doi.org/10.1016/0098-3004(96)00021-0

    Article  Google Scholar 

  • Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, Tsai M-Y, Künzli N, Schikowski T, Marcon A (2013) Development of NO 2 and NO x land use regression models for estimating air pollution exposure in 36 study areas in Europe–the ESCAPE project. Atmos Environ 72:10–23

    Article  Google Scholar 

  • Berman JD, Breysse PN, White RH, Waugh DW, Curriero FC (2014) Evaluating methods for spatial mapping: applications for estimating ozone concentrations across the contiguous United States. Environ Technol Innov 3:1–10

    Article  Google Scholar 

  • Bohling G (2005) Introduction to geostatistics and variogram analysis. Kansas Geol Surv 1:20

  • Commodore A, Wilson S, Muhammad O, Svendsen E, Pearce J (2017) Community-based participatory research for the study of air pollution: a review of motivations, approaches, and outcomes. Environ Monit Assess 189:378

    Article  Google Scholar 

  • Cortina–Januchs MG, Quintanilla–Dominguez J, Vega–Corona A, Andina D (2015) Development of a model for forecasting of PM 10 concentrations in Salamanca, Mexico. Atmos Pollut Res 6:626–634

    Article  Google Scholar 

  • Dai F, Zhou Q, Lv Z, Wang X, Liu G (2014) Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Ind 45:184–194. https://doi.org/10.1016/j.ecolind.2014.04.003

    Article  Google Scholar 

  • Emili E, Popp C, Wunderle S, Zebisch M, Petitta M (2011) Mapping particulate matter in alpine regions with satellite and ground-based measurements: an exploratory study for data assimilation. Atmos Environ 45:4344–4353

    Article  Google Scholar 

  • Fallahzadeh RA, Miri M, Taghavi M, Gholizadeh A, Anbarani R, Hosseini-Bandegharaei A, Ferrante M, Oliveri Conti G (2018) Spatial variation and probabilistic risk assessment of exposure to fluoride in drinking water. Food Chem Toxicol 113:314–321. https://doi.org/10.1016/j.fct.2018.02.001

    Article  Google Scholar 

  • Gertler AW, Moshe D, Rudich Y (2014) Urban PM source apportionment mapping using microscopic chemical imaging. Sci Total Environ 488:456–460

    Article  Google Scholar 

  • Ghaffari HR, Aval HE, Alahabadi A, Mokammel A, Khamirchi R, Yousefzadeh S, Ahmadi E, Rahmani-Sani A, Estaji M, Ghanbarnejad A (2017) Asthma disease as cause of admission to hospitals due to exposure to ambient oxidants in Mashhad, Iran. Environ Sci Pollut Res 24:27402–27408

    Article  Google Scholar 

  • Gholizadeh A, Ebrahimi AA, Salmani MH, Ehrampoush MH (2017a) Ozone-cathode microbial desalination cell; An innovative option to bioelectricity generation and water desalination. Chemosphere 188:470–477. https://doi.org/10.1016/j.chemosphere.2017.09.009

    Article  Google Scholar 

  • Gholizadeh A, Mokhtari M, Naimi N, Shiravand B, Ehrampoush MH, Miri M, Ebrahimi A (2017b) Assessment of corrosion and scaling potential in groundwater resources; a case study of Yazd-Ardakan Plain, Iran. Groundw Sustain Dev 5:59–65. https://doi.org/10.1016/j.gsd.2017.04.002

    Article  Google Scholar 

  • Gholizadeh A, Salmani MH, Ebrahimi AA, Hosseini SS, Ehrampoush MH, Miri M, Nikoonahad A, Pasalari H (2018) Improved power density and Cr/Pb removal using ozone in a microbial desalination cell. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0760-5

    Google Scholar 

  • Gong G, Mattevada S, O’Bryant SE (2014) Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ Res 130:59–69. https://doi.org/10.1016/j.envres.2013.12.005

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Gumiere SJ, Lafond JA, Hallema DW, Périard Y, Caron J, Gallichand J (2014) Mapping soil hydraulic conductivity and matric potential for water management of cranberry: characterisation and spatial interpolation methods. Biosys Eng 128:29–40

    Article  Google Scholar 

  • Hamm N, Finley A, Schaap M, Stein A (2015) A spatially varying coefficient model for mapping PM10 air quality at the European scale. Atmos Environ 102:393–405

    Article  Google Scholar 

  • Huang Z, Hu Y, Zheng J, Zhai X, Huang R (2018) An optimized data fusion method and its application to improve lateral boundary conditions in winter for Pearl River Delta regional PM2. 5 modeling, China. Atmos Environ 180:59–68

    Article  Google Scholar 

  • Jiang D, Zhang Y, Hu X, Zeng Y, Tan J, Shao D (2004) Progress in developing an ANN model for air pollution index forecast. Atmos Environ 38:7055–7064

    Article  Google Scholar 

  • Khaniabadi YO, Fanelli R, De Marco A, Daryanoosh SM, Kloog I, Hopke PK, Conti GO, Ferrante M, Mohammadi MJ, Babaei AA (2017) Hospital admissions in Iran for cardiovascular and respiratory diseases attributed to the Middle Eastern Dust storms. Environ Sci Pollut Res 24:16860–16868

    Article  Google Scholar 

  • Knörchen A, Ketzler G, Schneider C (2015) Implementation of a near-real time cross-border web-mapping platform on airborne particulate matter (PM) concentration with open-source software. Comput Geosci 74:13–26

    Article  Google Scholar 

  • Li H, Webster R, Shi Z (2015) Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma 237:71–77

    Article  Google Scholar 

  • Liu S, An N, Yang J, Dong S, Wang C, Yin Y (2015) Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. CATENA 133:137–144. https://doi.org/10.1016/j.catena.2015.05.010

    Article  Google Scholar 

  • Lloyd C, Atkinson P (2004) Increased accuracy of geostatistical prediction of nitrogen dioxide in the United Kingdom with secondary data. Int J Appl Earth Obs Geoinform 5:293–305

    Article  Google Scholar 

  • Luna AS, Paredes MLL, de Oliveira GCG, Corrêa SM (2014) Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmos Environ 98:98–104. https://doi.org/10.1016/j.atmosenv.2014.08.060

    Article  Google Scholar 

  • Masoud AA (2015) Geotechnical evaluation of the alluvial soils for urban land management zonation in Gharbiya governorate, Egypt. J Afr Earth Sc 101:360–374

    Article  Google Scholar 

  • McDonnell T, Reinds G, Sullivan T, Clark C, Bonten L, Mol-Dijkstra J, Wamelink G, Dovciak M (2018) Feasibility of coupled empirical and dynamic modeling to assess climate change and air pollution impacts on temperate forest vegetation of the eastern United States. Environ Pollut 234:902–914

    Article  Google Scholar 

  • McKendry IG (2002) Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2. 5) forecasting. J Air Waste Manag Assoc 52:1096–1101

    Article  Google Scholar 

  • Miri M, Rostami Aghdam Shendi M, Ghaffari HR, Ebrahimi Aval H, Ahmadi E, Taban E, Gholizadeh A, Yazdani Aval M, Mohammadi A, Azari A (2016) Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 163:601–609. https://doi.org/10.1016/j.chemosphere.2016.07.088

    Article  Google Scholar 

  • Mohammadyan M, Ghoochani M, Kloog I, Abdul-Wahab SA, Yetilmezsoy K, Heibati B, Pollitt KJG (2017) Assessment of indoor and outdoor particulate air pollution at an urban background site in Iran. Environ Monit Assess 189:235

    Article  Google Scholar 

  • Nawar S, Reda M, Farag F, El-Nahry A (2011) Mapping soil salinity in El-Tina plain in Egypt using geostatistical approach. Geoinformatics Forum, Salzburg, pp 81–90

    Google Scholar 

  • Peng X, Wang K, Li Q (2014) A new power mapping method based on ordinary kriging and determination of optimal detector location strategy. Ann Nucl Energy 68:118–123. https://doi.org/10.1016/j.anucene.2014.01.002

    Article  Google Scholar 

  • Rible R, Aguilar E, Chen A, Bader JL, Goodyear-Moya L, Singh KT, Paulson SE, Friedman J, Izadpanah N, Pregler J (2018) Exploration of spatial patterns of congenital anomalies in Los Angeles County using the vital statistics birth master file. Environ Monit Assess 190:184

    Article  Google Scholar 

  • Robinson D, Lloyd CD, McKinley JM (2013) Increasing the accuracy of nitrogen dioxide (NO 2) pollution mapping using geographically weighted regression (GWR) and geostatistics. Int J Appl Earth Obs Geoinf 21:374–383

    Article  Google Scholar 

  • Sousa S, Martins F, Alvim-Ferraz M, Pereira MC (2007) Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Model Softw 22:97–103

    Article  Google Scholar 

  • Tadić JM, Ilić V, Biraud S (2015) Examination of geostatistical and machine-learning techniques as interpolators in anisotropic atmospheric environments. Atmos Environ 111:28–38. https://doi.org/10.1016/j.atmosenv.2015.03.063

    Article  Google Scholar 

  • Tsou M-H (2004) Integrated mobile GIS and wireless internet map servers for environmental monitoring and management. Cartogr Geogr Inf Sci 31:153–165

    Article  Google Scholar 

  • Vakili M, Sabbagh-Yazdi S-R, Kalhor K, Khosrojerdi S (2015) Using artificial neural networks for prediction of global solar radiation in tehran considering particulate matter air pollution. Energy Procedia 74:1205–1212

    Article  Google Scholar 

  • Van den Bossche J, Peters J, Verwaeren J, Botteldooren D, Theunis J, De Baets B (2015) Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset. Atmos Environ 105:148–161

    Article  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley. New York

    Book  Google Scholar 

  • Ye D, Klein M, Mulholland JA, Russell AG, Weber R, Edgerton ES, Chang HH, Sarnat JA, Tolbert PE, Sarnat SE (2018) Estimating acute cardiovascular effects of ambient PM2. 5 metals. Environ Health Perspect 126:027007 (Online)

    Article  Google Scholar 

  • Zhang H, Tripathi NK (2018) Geospatial hot spot analysis of lung cancer patients correlated to fine particulate matter (PM2. 5) and industrial wind in Eastern Thailand. J Clean Prod 170:407–424

    Article  Google Scholar 

  • Zhao L, Chen C, Wang P, Chen Z, Cao S, Wang Q, Xie G, Wan Y, Wang Y, Lu B (2015) Influence of atmospheric fine particulate matter (PM2. 5) pollution on indoor environment during winter in Beijing. Build Environ 87:283–291

    Article  Google Scholar 

Download references

Acknowledgements

The authors would also like to show your gratitude to the individuals and departments who supplied PM2.5 data from their respective local and district councils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, A., Neshat, A.A., Conti, G.O. et al. PM2.5 concentration modeling and mapping in the urban areas. Model. Earth Syst. Environ. 5, 897–906 (2019). https://doi.org/10.1007/s40808-019-00576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00576-0

Keywords

Navigation