Skip to main content
Log in

Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: case study of Tehran, Iran

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

In this study we aimed to develop an optimized prediction model to estimate a fine-resolution grid of ground-level PM2.5 levels over Tehran. Using remote sensing data to obtain fine-resolution grids of particulate levels in highly polluted environments in areas such as Middle East with the abundance of brightly reflecting deserts is challenging.

Methods

Different prediction models implementing 3 km AOD products from the MODIS collection 6 and various effective parameters were used to obtain a reliable model to estimate ground-level PM2.5 concentrations. In this regards, the linear mixed effect model (LME), multi-variable linear regression model (MLR), Gaussian process model (GPM), artificial neural network (ANN) and support vector regression (SVR) were developed and their performance were compared. Since the LME and GPM outperformed other models, they were further optimized based on meteorological and topographical variables. These models were used to estimate PM2.5 values over the highly polluted megacity, Tehran, Iran. Moreover, the influence of site effect term on the performance of different shapes of LME models was evaluated by considering the random intercept for sites.

Results

Results showed LME models without the site effect term were able to explain ground-level variabilities of PM2.5 concentrations in ranges of 60–66% (RMSE = 9.6 to 10.3 μg/m3) and 35–41% (RMSE = 12.7 to 13.3 μg/m3) during the model-fitting and cross-validation, respectively. By considering the site effect term, the performance of LME models during calibrations and validations improved by 20% and 50% on average, respectively (18.5% and 17% decrease in the RSME) as compared to LME models without the site effect term. The optimized shape of LME models had a good agreement during both model-fitting (R2 of 0.76) and cross-validation (R2 of 0.6). Site-specific and seasonal performances of all types of models revealed that LME models had highest R2 values over all monitoring stations and all seasons during the cross-validation. LME models had the best performance in May and March compared to other months during the model-fitting and cross-validation. However, LME models had a significant weakness in predicting extreme values of PM2.5 during the cross-validation. Among all other types of models, GPM with the R2 value of 0.59 and the RMSE of 10.2 μg/m3 had the best performance during the cross-validation.

Conclusions

While the best shape of LME and GPM had similar and reliable performances in predicting ground-level PM2.5 values during the cross-validation, GPM was able to predict extreme values of ground-level PM2.5 concentrations, which was the weakness of LME models and was an important issue in urban polluted environments. In this respect, GPM could be a good alternative for LME models for high levels of PM2.5 concentrations. The spatial distribution of estimated PM2.5 values represented that central parts of Tehran were the most polluted area over the studied region which was consistent with the ground-level recording PM2.5 data over monitoring stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

PM:

Particulate Matter.

MODIS:

Moderate Resolution Imaging Spectroradiometer.

AOD:

Aerosol Optical Depth.

AERONET:

Aerosol RObotic NETwork.

AQCC:

Air Quality Control Company.

LME:

Linear Mixed Effect.

MLR:

Multi-variable Linear Regression.

GPM:

Gaussian Process Model.

ANN:

Artificial Neural Network.

SVR:

Support Vector Regression.

EOS:

Earth Observing System.

Vis:

Visibility.

CC:

Cloud Cover.

Ux, Vy :

Wind Speed in X and Y directions.

temp:

Temperature.

Eva:

Evaporation.

ST:

Shining Time.

TP:

Total Precipitation.

RH:

Relative Humidity.

PBLH:

Planetary Boundary Layer Height.

WRF:

Weather Research and Forecasting.

NCAR:

National Center for Atmospheric Research.

UPP:

Unified Post Processing.

DFC:

Distance From Center.

FSM:

Forward Stepwise Method.

R2 :

Coefficient of Determination.

AIC:

Akaike Information Criterion.

RMSE:

Root Mean Square Error.

CV:

Cross Validation.

MAE:

Mean Absolute Error.

SD:

Standard Deviation.

References

  1. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233–42.

    Article  CAS  Google Scholar 

  2. Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M, Künzli N, et al. The global burden of disease due to outdoor air pollution. J Toxicol Env Heal A. 2005;68(13–14):1301–7.

    Article  CAS  Google Scholar 

  3. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An association between air pollution and mortality in six US cities. New Engl J Med. 1993;329(24):1753–9.

    Article  CAS  Google Scholar 

  4. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA-J Am Med Assoc. 2006;295(10):1127–34.

    Article  CAS  Google Scholar 

  5. Franklin M, Zeka A, Schwartz J. Association between PM2. 5 and all-cause and specific-cause mortality in 27 US communities. J Expo Sci Env Epid. 2007;17(3):279–87.

    Article  CAS  Google Scholar 

  6. Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, et al. The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med. 2004;351(11):1057–67.

    Article  CAS  Google Scholar 

  7. Gent JF, Triche EW, Holford TR, Belanger K, Bracken MB, Beckett WS, et al. Association of low-level ozone and fine particles with respiratory symptoms in children with asthma. JAMA-J Am Med Assoc. 2003;290(14):1859–67.

    Article  CAS  Google Scholar 

  8. Lin S, Munsie JP, Hwang S-A, Fitzgerald E, Cayo MR. Childhood asthma hospitalization and residential exposure to state route traffic. Environ Res. 2002;88(2):73–81.

    Article  CAS  Google Scholar 

  9. Romieu I, Samet JM, Smith KR, Bruce N. Outdoor air pollution and acute respiratory infections among children in developing countries. J Occup Environ Med. 2002;44(7):640–9.

    Article  Google Scholar 

  10. Hu X, Waller LA, Lyapustin A, Wang Y, Al-Hamdan MZ, Crosson WL, et al. Estimating ground-level PM 2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens Environ. 2014;140:220–32.

    Article  Google Scholar 

  11. Lee HJ, Coull BA, Bell ML, Koutrakis P. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ Res. 2012;118:8–15.

    Article  CAS  Google Scholar 

  12. Tian J, Chen D. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM 2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sens Environ. 2010;114(2):221–9.

    Article  Google Scholar 

  13. Tsai T-C, Jeng Y-J, Chu DA, Chen J-P, Chang S-C. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos Environ. 2011;45(27):4777–88.

    Article  CAS  Google Scholar 

  14. Bilal M, Nichol JE, Spak SN. A new approach for estimation of fine particulate concentrations using satellite aerosol optical depth and binning of meteorological variables. Aerosol Air Qual Res. 2017;11:356–67.

    Article  Google Scholar 

  15. Al-Saadi J, Szykman J, Pierce RB, Kittaka C, Neil D, Chu DA, et al. Improving national air quality forecasts with satellite aerosol observations. B Am Meteorol Soc. 2005;86(9):1249–61.

    Article  Google Scholar 

  16. Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ. 2004;38(16):2495–509.

    Article  CAS  Google Scholar 

  17. Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ. 2006;40(30):5880–92.

    Article  CAS  Google Scholar 

  18. Dinoi A, Perrone MR, Burlizzi P. Application of MODIS products for air quality studies over southeastern Italy. Remote Sens. 2010;2(7):1767–96.

    Article  Google Scholar 

  19. Hoff RM, Christopher SA. Remote sensing of particulate pollution from space: have we reached the promised land? J Air Waste Manag Assoc. 2009;59(6):645–75 discussion 642-4.

    Article  CAS  Google Scholar 

  20. Liu Y, Franklin M, Kahn R, Koutrakis P. Using aerosol optical thickness to predict ground-level PM 2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS. Remote Sens Environ. 2007;107(1):33–44.

    Article  Google Scholar 

  21. Schaap M, Apituley A, Timmermans R, Koelemeijer R, Leeuw G. d. Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands. Atmos Chem Phys. 2009;9(3):909–25.

    Article  CAS  Google Scholar 

  22. Liu J, Zheng Y, Li Z, Wu R. Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmos Res. 2008;89(1–2):194–205.

    Article  Google Scholar 

  23. Remer LA, Kaufman Y, Tanré D, Mattoo S, Chu D, Martins JV, et al. The MODIS aerosol algorithm, products, and validation. J Atmos Sci. 2005;62(4):947–73.

    Article  Google Scholar 

  24. Sotoudeheian S, Arhami M. Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran. J Environ Health Sci Eng. 2014;12(1):122.

    Article  Google Scholar 

  25. Chu DA, Kaufman Y, Zibordi G, Chern J, Mao J, Li C, et al. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J Geophys Res-Atmos. 2003;108(D21).

  26. Hutchison KD, Smith S, Faruqui SJ. Correlating MODIS aerosol optical thickness data with ground-based PM2. 5 observations across Texas for use in a real-time air quality prediction system. Atmos Environ. 2005;39(37):7190–203.

    Article  CAS  Google Scholar 

  27. Wang J, Christopher SA. Intercomparison between satellite-derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies. Geophys Res Lett. 2003;30(21).

  28. Gupta P, Christopher SA. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J Geophys Res-Atmos. 2009;114(D14).

  29. Hu X, Waller LA, Al-Hamdan MZ, Crosson WL, Estes MG Jr, Estes SM, et al. Estimating ground-level PM2. 5 concentrations in the southeastern US using geographically weighted regression. Environ Res. 2013;121:1–10.

    Article  CAS  Google Scholar 

  30. Kloog I, Nordio F, Coull BA, Schwartz J. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the mid-Atlantic states. Environ Sci Technol. 2012;46(21):11913–21.

    Article  CAS  Google Scholar 

  31. Koelemeijer R, Homan C, Matthijsen J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos Environ. 2006;40(27):5304–15.

    Article  CAS  Google Scholar 

  32. Kumar N, Chu A, Foster A. An empirical relationship between PM 2.5 and aerosol optical depth in Delhi metropolitan. Atmos Environ. 2007;41(21):4492–503.

    Article  CAS  Google Scholar 

  33. Liu Y, Paciorek CJ, Koutrakis P. Estimating regional spatial and temporal variability of PM2. 5 concentrations using satellite data, meteorology, and land use information. Environ Health Persp. 2009;117(6):886.

    Article  Google Scholar 

  34. Sorek-Hamer M, Strawa A, Chatfield R, Esswein R, Cohen A, Broday D. Improved retrieval of PM2. 5 from satellite data products using non-linear methods. Environ Pollut. 2013;182:417–23.

    Article  CAS  Google Scholar 

  35. You W, Zang Z, Pan X, Zhang L, Chen D. Estimating PM2. 5 in Xi'an, China using aerosol optical depth: a comparison between the MODIS and MISR retrieval models. Sci Total Environ. 2015;505:1156–65.

    Article  CAS  Google Scholar 

  36. Zeydan Ö, Wang Y. Using MODIS derived aerosol optical depth to estimate ground-level PM2. 5 concentrations over Turkey. Atmospheric Pollution Research. (2019).

  37. Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States. Environ Sci Technol. 2016;50(9):4712–21.

    Article  CAS  Google Scholar 

  38. Gupta P, Christopher SA. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. J Geophys Res-Atmos. 2009;114(D20).

  39. Li T, Shen H, Zeng C, Yuan Q, Zhang L. Point-surface fusion of station measurements and satellite observations for mapping PM2. 5 distribution in China: methods and assessment. Atmos Environ. 2017;152:477–89.

    Article  CAS  Google Scholar 

  40. Wu Y, Guo J, Zhang X, Tian X, Zhang J, Wang Y, et al. Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Sci Total Environ. 2012;433:20–30.

    Article  CAS  Google Scholar 

  41. Yao L, Lu N. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006–2010. Environ Sci Pollut Res. 2014;21(16):9665–75.

    Article  CAS  Google Scholar 

  42. Zang L, Mao F, Guo J, Gong W, Wang W, Pan Z. Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. Environ Pollut. 2018;241:654–63.

    Article  CAS  Google Scholar 

  43. Lee H, Liu Y, Coull B, Schwartz J, Koutrakis P. A novel calibration approach of MODIS AOD data to predict PM2. 5 concentrations. Atmos Chem Phys. 2011;11(15):7991–8002.

    Article  CAS  Google Scholar 

  44. Sorek-Hamer M, Kloog I, Koutrakis P, Strawa AW, Chatfield R, Cohen A, et al. Assessment of PM 2.5 concentrations over bright surfaces using MODIS satellite observations. Remote Sens Environ. 2015;163:180–5.

    Article  Google Scholar 

  45. Yap X, Hashim M. A robust calibration approach for PM 10 prediction from MODIS aerosol optical depth. Atmos Chem Phys. 2012;12(12).

  46. Kloog I, Koutrakis P, Coull BA, Lee HJ, Schwartz J. Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos Environ. 2011;45(35):6267–75.

    Article  CAS  Google Scholar 

  47. Meng X, Fu Q, Ma Z, Chen L, Zou B, Zhang Y, et al. Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environ Pollut. 2016;208:177–84.

    Article  CAS  Google Scholar 

  48. Nordio F, Kloog I, Coull BA, Chudnovsky A, Grillo P, Bertazzi PA, et al. Estimating spatio-temporal resolved PM 10 aerosol mass concentrations using MODIS satellite data and land use regression over Lombardy, Italy. Atmos Environ. 2013;74:227–36.

    Article  CAS  Google Scholar 

  49. Zheng Y, Zhang Q, Liu Y, Geng G, He K. Estimating ground-level PM2. 5 concentrations over three megalopolises in China using satellite-derived aerosol optical depth measurements. Atmos Environ. 2016;124:232–42.

    Article  CAS  Google Scholar 

  50. Zhang T, Zang L, Wan Y, Wang W, Zhang Y. Ground-level PM2. 5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8. Sci Total Environ. 2019;676:535–44.

    Article  CAS  Google Scholar 

  51. Xie Y, Wang Y, Zhang K, Dong W, Lv B, Bai Y. Daily estimation of ground-level PM2. 5 concentrations over Beijing using 3 km resolution MODIS AOD. Environ Sci Technol. 2015;49(20):12280–8.

    Article  CAS  Google Scholar 

  52. You W, Zang Z, Zhang L, Zhang M, Pan X, Li Y. A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval. Atmos Res. 2016;168:169–79.

    Article  CAS  Google Scholar 

  53. Yang L, Xu H, Jin Z. Estimating ground-level PM2. 5 over a coastal region of China using satellite AOD and a combined model. J Clean Prod. 2019;227:472–82.

    Article  CAS  Google Scholar 

  54. Arvani B, Pierce R, Lyapustin A, Wang Y, Ghermandi G, Teggi S. High spatial resolution aerosol retrievals used for daily particulate matter monitoring over Po valley, northern Italy. Atmos Chem Phys. 2015;15(1):123–55.

    Google Scholar 

  55. Levy R, Mattoo S, Munchak L, Remer L, Sayer A, Hsu N. The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tec. 2013;6:159–259.

    Google Scholar 

  56. Li X, Zhang X. Predicting ground-level PM2. 5 concentrations in the Beijing-Tianjin-Hebei region: a hybrid remote sensing and machine learning approach. Environ Pollut. 2019;249:735–49.

    Article  CAS  Google Scholar 

  57. Chen G, Li S, Knibbs LD, Hamm NA, Cao W, Li T, et al. A machine learning method to estimate PM2. 5 concentrations across China with remote sensing, meteorological and land use information. Sci Total Environ. 2018;636:52–60.

    Article  CAS  Google Scholar 

  58. Chen G, Knibbs LD, Zhang W, Li S, Cao W, Guo J, et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ Pollut. 2018;233:1086–94.

    Article  CAS  Google Scholar 

  59. Xue T, Zheng Y, Tong D, Zheng B, Li X, Zhu T, et al. Spatiotemporal continuous estimates of PM2. 5 concentrations in China, 2000–2016: a machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ Int. 2019;123:345–57.

    Article  CAS  Google Scholar 

  60. Huang K, Xiao Q, Meng X, Geng G, Wang Y, Lyapustin A, et al. Predicting monthly high-resolution PM2. 5 concentrations with random forest model in the North China plain. Environ Pollut. 2018;242:675–83.

    Article  CAS  Google Scholar 

  61. He Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2. 5 in China via space-time regression modeling. Remote Sens Environ. 2018;206:72–83.

    Article  Google Scholar 

  62. Reid CE, Jerrett M, Petersen ML, Pfister GG, Morefield PE, Tager IB, et al. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning. Environ Sci Technol. 2015;49(6):3887–96.

    Article  CAS  Google Scholar 

  63. Kermanshah A, Sotoudeheian S, Tajrishy M. Satellite and ground-based assessment of Middle East meteorological parameters impact on dust activities in western Iran. Sci Iran Trans A. 2016;23(6):2478.

    Google Scholar 

  64. Sotoudeheian S, Salim R, Arhami M. Impact of Middle Eastern dust sources on PM10 in Iran: Highlighting the impact of Tigris-Euphrates basin sources and Lake Urmia desiccation. J Geophys Res-Atmos. 2016;121(23).

  65. Ghotbi S, Sotoudeheian S, Arhami M. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model. Atmos Environ. 2016;141:333–46.

    Article  CAS  Google Scholar 

  66. Kaufman YJ, Fraser RS. Light extinction by aerosols during summer air pollution. J Clim Appl Meteorol. 1983;22(10):1694–706.

    Article  Google Scholar 

  67. Liu Y, Koutrakis P, Kahn R. Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 1—method development. JAPCA J Air Waste Ma. 2007;57(11):1351–9.

    Article  Google Scholar 

  68. Karimian H, Li Q, Li C, Jin L, Fan J, Li Y. An improved method for monitoring fine particulate matter mass concentrations via satellite remote sensing. Aerosol Air Qual Res. 2016;16(4):1081–92.

    Article  CAS  Google Scholar 

  69. Chen S, Dudhia J. Annual report: WRF physics. Air Force Weather Agency. 2000.

  70. Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Wang W, Powers J G, A description of the advanced research WRF version 2. (2005), National center for atmospheric research boulder co mesoscale and microscale meteorology div.

  71. James G, Witten D, Hastie T, Tibshirani R, An introduction to statistical learning. (2013): Springer.

  72. Kaufman Y, Tanré D, Remer LA, Vermote E, Chu A, Holben B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res-Atmos. 1997;102(D14):17051–67.

    Article  CAS  Google Scholar 

  73. Levy R C, Remer L A, Tanre D, Mattoo S, Kaufman Y J. Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2; Feb (2009). Download from http://modisatmos. gsfc. nasa. gov/_docs/ATBD_MOD04_C005_rev2. pdf. 2009.

  74. More S, Pradeep Kumar P, Gupta P, Devara P, Aher G. Comparison of aerosol products retrieved from AERONET, MICROTOPS and MODIS over a tropical urban city, Pune. India Aerosol Air Qual Res. 2013;13(1):107–21.

    Article  Google Scholar 

  75. Sherman JP, Gupta P, Levy RC, Sherman PJ. An evaluation of MODIS-retrieved aerosol optical depth over a mountainous AERONET site in the southeastern US. Aerosol Air Qual Res. 2016;16(12):3243–55.

    Article  Google Scholar 

  76. Barmpadimos I, Hueglin C, Keller J, Henne S, Prévôt A. Influence of meteorology on PM 10 trends and variability in Switzerland from 1991 to 2008. Atmos Chem Phys. 2011;11(4):1813–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our special appreciation and gratitude to the Tehran AQCC and Iran Meteorological Organization for providing PM2.5 and meteorological data. The authors would also like to give special thanks to Mr. Wasim Tayyeb for his helpful contribution in this study.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SS was the main investigator, carried out data collection and processing, statistical modeling, interpreting and analyzing of results and wrote the initial draft. MA was advisor of the study, participated in design of study, interpreting of results and revise of draft manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Arhami.

Ethics declarations

Availability of data and materials

All the necessary data have been mentioned in the paper. If other researchers need additional data, they can contact with the corresponding author.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Capsule:

In this study a reliable model has been developed to estimate ground level PM2.5 concentrations using a combination of AOD and meteorological data at scales that reflects intra-community variabilities in the heavily polluted urban area of Tehran, Iran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotoudeheian, S., Arhami, M. Estimating ground-level PM2.5 concentrations by developing and optimizing machine learning and statistical models using 3 km MODIS AODs: case study of Tehran, Iran. J Environ Health Sci Engineer 19, 1–21 (2021). https://doi.org/10.1007/s40201-020-00509-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00509-5

Keywords

Navigation