Skip to main content
Log in

New Method for Fatigue Characterization via Cyclical Instrumented Indentation Testing

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

New materials and structures with complex microstructural distributions are being rapidly developed using advanced manufacturing approaches, such as Additive Manufacturing (AM). For example, it is possible to fabricate metals using AM processes, such as Direct Metal Laser Sintering (DMLS), with spatial variations at sub-millimeter scales in textured grain structures, residual porosity, and precipitate morphologies at sub-millimeter scales. This poses new challenges for characterizing the corresponding variation in material behavior, particularly fatigue, for which conventional techniques were not designed. Therefore, new techniques are needed to quickly and accurately quantify these spatial variations. To this end, a method was developed for locally characterizing the fatigue behavior of materials, particularly metals and metal-matrix composites, by extending indentation methods to fatigue characterization using cyclic instrumented testing to measure the localized stiffness, which degrades due to the accumulation of fatigue damage under the indenter. A high frequency electro mechanical load frame equipped with an indenter was used to characterize three different metals: 4340 steel, 9310 steel, and brass. The S-N curve was then generated by applying a linear transformation to convert the measured stiffness to an equivalent alternating stress. The results correlated well with those obtained using conventional fatigue characterization techniques, including capturing the endurance limits. Finite element analysis with fatigue damage modeling was also used to quantify the evolution of stresses near the indenter due to the fatigue damage, while optical microscopy provided validation of the observed accumulation of plastic deformation associated with cyclic indentation loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ASTM (2004) Standard Test Method for Strain-Controlled Fatigue Testing. Annual Book of ASTM Standards E606/E606M-12

  2. ASTM (2002) Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. Annual Book of ASTM Standards E466-21

  3. ASTM International (2004) Standard practice for statistical analysis of linear or linearized stress-life (S–N) and strain-life (e–N) fatigue data. Annual Book of ASTM Standards E739-10

  4. Wang Y, Zhang L, Daynes S et al (2018) Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater Des 142:114–123. https://doi.org/10.1016/j.matdes.2018.01.011

    Article  CAS  Google Scholar 

  5. Maculotti G, Genta G, Lorusso M et al (2019) Instrumented indentation test: contact stiffness evaluation in the Nano-range. Nanomanufacturing and Metrology 2:16–25. https://doi.org/10.1007/s41871-018-0030-y

    Article  CAS  Google Scholar 

  6. Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  7. Cole DP, Bruck HA, Roytburd AL (2008) Nanoindentation studies of graded shape memory alloy thin films processed using diffusion modification. J Appl Phys 103:064315. https://doi.org/10.1063/1.2888510

    Article  CAS  Google Scholar 

  8. Yan W, Pun CL, Simon GP (2012) Conditions of applying Oliver-Pharr method to the nanoindentation of particles in composites. Compos Sci Technol 72:1147–1152. https://doi.org/10.1016/j.compscitech.2012.03.019

    Article  CAS  Google Scholar 

  9. Tranchida D, Piccarolo S, Loos J, Alexeev A (2006) Accurately evaluating Young’s modulus of polymers through nanoindentations: a phenomenological correction factor to the Oliver and Pharr procedure. Appl Phys Lett 89:171905. https://doi.org/10.1063/1.2364863

    Article  CAS  Google Scholar 

  10. Kontomaris SV, Stylianou A, Nikita KS et al (2021) A simplified approach for the determination of fitting constants in Oliver-Pharr method regarding biological samples. Phys Biol 16:056003. https://doi.org/10.1088/1478-3975/ab252e

    Article  CAS  Google Scholar 

  11. Zysset PK, Edward Guo X, Edward Hoffler C et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012. https://doi.org/10.1016/S0021-9290(99)00111-6

    Article  CAS  Google Scholar 

  12. Li X, Bhushan B (2000) Continuous stiffness measurement and creep behavior of composite magnetic tapes. Thin Solid Films 377:401–406. https://doi.org/10.1016/S0040-6090(00)01368-7

    Article  Google Scholar 

  13. Li X, Bhushan B (2002) Nanofatigue studies of ultrathin hard carbon overcoats used in magnetic storage devices. J Appl Phys 91:8334. https://doi.org/10.1063/1.1452699

    Article  CAS  Google Scholar 

  14. Hoshide T, Ohara T, Yamada T (1988) Fatigue crack growth from indentation flaw in ceramics. Int J Fract 37:47–59. https://doi.org/10.1007/BF00017822

    Article  CAS  Google Scholar 

  15. Reece M, Guiu F (1990) Repeated indentation method for studying cyclic fatigue in ceramics: part 1. General theory. J Am Ceram Soc 73:1004–1013. https://doi.org/10.1111/j.1151-2916.1990.tb05149.x

    Article  CAS  Google Scholar 

  16. Lawn BR, Marshall DB, Anstis GR, Dabbs TP (1981) Fatigue analysis of brittle materials using indentation flaws. J Mater Sci 16:2846–2854. https://doi.org/10.1007/bf00552969

    Article  Google Scholar 

  17. Cook RR, Lawn BR, Anstis GR (1982) Fatigue analysis of brittle materials using indentation flaws: part 2. Case study on a glass-ceramic. J Mater Sci 17:1108–1116. https://doi.org/10.1007/bf00543530

    Article  CAS  Google Scholar 

  18. Schmahl M, Märten A, Zaslansky P, Fleck C (2020) Nanofatigue behaviour of single struts of cast A356.0 foam: cyclic deformation, nanoindent characteristics and sub-surface microstructure. Mater Des 195:109016. https://doi.org/10.1016/j.matdes.2020.109016

    Article  CAS  Google Scholar 

  19. Cao D, Malakooti S, Kulkarni V, Ren Y (2020) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mechanical of Time-Dependent Materials 25:353–363. https://doi.org/10.1007/s11043-020-09448-y

    Article  CAS  Google Scholar 

  20. Cao D, Malakooti S, Kulkarni V, Ren Y, Liu Y, Nie X, Qian D, Griffith DT, Lu H (2021) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25:71–93. https://doi.org/10.1002/we.2661

    Article  Google Scholar 

  21. Wang X, Xu T, de Andrade MJ, Rampalli I, Cao D, Haque M, Roy S, Baughman RH, Lu H (2022) The interfacial shear strength of carbon nanotube sheet modified carbon Fiber composites. Challenges in Mechanics of Time Dependent Materials 2:25–32. https://doi.org/10.1007/978-3-030-59542-5_4

    Article  CAS  Google Scholar 

  22. Xu BX, Yue ZF, Wang J (2007) Indentation fatigue behaviour of polycrystalline copper. Mech Mater 39:1066–1080. https://doi.org/10.1016/j.mechmat.2007.06.001

    Article  Google Scholar 

  23. Xu B, Yonezu A, Chen X (2010) An indentation fatigue strength law. Philos Mag Lett 90:313–322. https://doi.org/10.1080/09500831003662495

    Article  CAS  Google Scholar 

  24. Xu B, Yue Z, Chen X (2009) An indentation fatigue depth propagation law. Scr Mater 60:854–857. https://doi.org/10.1016/j.scriptamat.2009.01.027

    Article  CAS  Google Scholar 

  25. Kang SK, Kim JY, Kang I, Kwon D (2009) Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter. J Mater Res 24:2965–2973. https://doi.org/10.1557/jmr.2009.0358

    Article  CAS  Google Scholar 

  26. Costa ALM, Shuman DJ, Machado RR, Andrade MS (2004) Determination of the compliance of an instrumented indentation testing machine. In: IMEKO TC5 Conference on Hardness Measurements Theory and Application in Laboratories and Industries, HARDMEKO 2004

  27. Hay J, Agee P, Herbert E (2010) Continuous stiffness measurement during instrumented indentation testing. Exp Tech 34:86–94. https://doi.org/10.1111/j.1747-1567.2010.00618.x

    Article  Google Scholar 

  28. Guo YB, Yen DW (2004) A FEM study on mechanisms of discontinuous chip formation in hard machining. J Mater Process Technol 155–156:1350–1356. https://doi.org/10.1016/j.jmatprotec.2004.04.210

    Article  CAS  Google Scholar 

  29. VanLandingham MR (2003) Review of instrumented indentation. Journal of Research of the National Institute of Standards and Technology 108:249–265. https://doi.org/10.6028/jres.108.024

    Article  Google Scholar 

  30. Ural A, Heber G, Wawrzynek PA et al (2005) Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Eng Fract Mech 72:1148–1170. https://doi.org/10.1016/j.engfracmech.2004.08.004

    Article  Google Scholar 

  31. ASTM International (2019) ASTM E18-19 Standard test methods for Rockwell hardness of metallic materials. ASTM

  32. Kossman S, Coorevits T, Iost A, Di C (2017) A new approach of the Oliver and Pharr model to fit the unloading curve from instrumented indentation testing. J Mater Res 32:2230–2240. https://doi.org/10.1557/jmr.2017.120

    Article  CAS  Google Scholar 

  33. Dowling NE (2004) Mean stress effects in stress-life and strain-life fatigue. SAE Technical Paper 32:1004–1019

    Google Scholar 

  34. Ragab A, Alawi H, Sorein K (1989) Corrosion fatigue of steel in various aqueous environments. Fatigue & Fracture of Engineering Materials & Structures 12:469–479. https://doi.org/10.1111/j.1460-2695.1989.tb00557.x

    Article  Google Scholar 

  35. Turnquist DA, Matlock DK, Speer JG, Krauss G (2005) Effects of testing temperature on the fatigue behavior of carburized steel. SAE Technical Paper 2005-01-0986. https://doi.org/10.4271/2005-01-0986

  36. Williams HD, Smith GC (1966) The fatigue of beta-brass. Philos Mag 13:835–854. https://doi.org/10.1080/14786436608212699

    Article  CAS  Google Scholar 

  37. Gorash Y, Mackenzie D (2015) On cyclic yield strength in definition of limits for characterisation of fatigue and creep behavior. Open Engineering 7:125–140. https://doi.org/10.1515/eng-2017-0019

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge support from NAWCAD in Pax River, MD through award N00421-19-1-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.A. Bruck.

Ethics declarations

Conflict of Interest

All authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, L., Bruck, H. New Method for Fatigue Characterization via Cyclical Instrumented Indentation Testing. Exp Tech 47, 679–688 (2023). https://doi.org/10.1007/s40799-022-00580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-022-00580-7

Keywords

Navigation