Skip to main content
Log in

Stem Cell-Based Strategies for Prenatal Treatment of Spina Bifida and the Promise of Cell-Free, Minimally Invasive Approaches

  • REVIEW
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Spina bifida (SB) is a severe birth defect that affects 1400 newborns annually in the USA. SB is often diagnosed before irreversible neurological damage occurs, making it possible to exploit the therapeutic potential of mesenchymal stem cell (MSC)-based therapeutics as intervention strategies for neural tissue protection against further damage. Here, we discuss the most recent MSC-based intervention strategies developed to create an in utero pro-regenerative environment.

Recent Findings

MSCs show potential benefits in the prenatal treatment of SB due to their remarkable healing and protective potential, both in preclinical and clinical studies. While promising, current in utero tissue repair strategies remain highly invasive for the mother and the fetus

Summary

We provide insights on the mechanisms activated by MSCs in utero and discuss the advantages of MSC-free approaches, as minimally invasive tools capable of functional tissue repair while reducing the limitations of current therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sacco A, Ushakov F, Thompson D, Peebles D, Pandya P, De Coppi P, et al. Fetal surgery for open spina bifida. Obstet Gynaecol. 2019;21(4):271–82.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iskandar BJ, Finnell RH. Spina bifida. N Engl J Med. 2022;387(5):444–50.

    Article  PubMed  Google Scholar 

  3. Joyeux L, van der Merwe J, Aertsen M, Patel PA, Khatoun A, Mori da Cunha M, et al. Neuroprotection is improved by watertightness of fetal spina bifida repair in the sheep model. Ultrasound Obstet Gynecol. 2023;61(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  4. Joyeux L, De Bie F, Danzer E, Van Mieghem T, Flake AW, Deprest J. Safety and efficacy of fetal surgery techniques to close a spina bifida defect in the fetal lamb model: a systematic review. Prenat Diagn. 2018;38(4):231–42.

    Article  PubMed  Google Scholar 

  5. Belfort M, Deprest J, Hecher K. Current controversies in prenatal diagnosis 1: in utero therapy for spina bifida is ready for endoscopic repair. Prenat Diagn. 2016;36(13):1161–6.

    Article  PubMed  Google Scholar 

  6. Adzick NS. Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention. Semin Fetal Neonatal Med. 2010;15(1):9–14.

    Article  PubMed  Google Scholar 

  7. Stiefel D, Copp AJ, Meuli M. Fetal spina bifida in a mouse model: loss of neural function in utero. J Neurosurg. 2007;106(3 Suppl):213–21.

    PubMed  PubMed Central  Google Scholar 

  8. Joyeux L, Engels AC, Van Der Merwe J, Aertsen M, Patel PA, Deprez M, et al. Validation of the fetal lamb model of spina bifida. Sci Rep. 2019;9(1):9327.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. de Coppi P, Loukogeorgakis S, Gotherstrom C, David AL, Almeida-Porada G, Chan JKY, et al. Regenerative medicine: prenatal approaches. Lancet Child Adolesc Health. 2022;6(9):643–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Inversetti A, Van der Veeken L, Thompson D, Jansen K, Van Calenbergh F, Joyeux L, et al. Neurodevelopmental outcome of children with spina bifida aperta repaired prenatally vs postnatally: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  12. Tulipan N, Wellons JC 3rd, Thom EA, Gupta N, Sutton LN, Burrows PK, et al. Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr. 2015;16(6):613–20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hassan AS, Du YL, Lee SY, Wang A, Farmer DL. Spina bifida: a review of the genetics, pathophysiology and emerging cellular therapies. J Dev Biol. 2022;10(2):22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Church PT, Castillo H, Castillo J, Berndl A, Brei T, Heuer G, et al. Prenatal counseling: Guidelines for the care of people with spina bifida. J Pediatr Rehabil Med. 2020;13(4):461–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challenge of understanding, preventing, and treating neural tube defects. Science. 2013;339(6123):1222002.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bullard KM, Longaker MT, Lorenz HP. Fetal wound healing: current biology. World J Surg. 2003;27(1):54–61.

    Article  PubMed  Google Scholar 

  17. Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, et al. Biomimetic tissue engineering: tuning the immune and inflammatory response to implantable biomaterials. Adv Healthc Mater. 2018;7(17):1800490.

    Article  CAS  Google Scholar 

  18. Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. Mol Ther Methods Clin Dev. 2016;5:16020.

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Santis M, De Luca C, Mappa I, Cesari E, Quattrocchi T, Spagnuolo T, et al. In-utero stem cell transplantation: clinical use and therapeutic potential. Minerva Ginecol. 2011;63(4):387–98.

    PubMed  Google Scholar 

  20. MacKenzie TC, David AL, Flake AW, Almeida-Porada G. Consensus statement from the first international conference for in utero stem cell transplantation and gene therapy. Front Pharmacol. 2015;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McClain LE, Flake AW. In utero stem cell transplantation and gene therapy: recent progress and the potential for clinical application. Best Pract Res Clin Obstet Gynaecol. 2016;31:88–98.

    Article  PubMed  Google Scholar 

  22. Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. Burns Trauma. 2021;9:tkab002.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 2021;12(1):192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022;7(1):272.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Long C, Lankford L, Wang A. Stem cell-based in utero therapies for spina bifida: implications for neural regeneration. Neural Regen Res. 2019;14(2):260–1.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi ZM. Prenatal neural tube anomalies: a decade of intrauterine stem cell transplantation using advanced tissue engineering methods. Stem Cell Rev Rep. 2022;18(2):752–67.

    Article  PubMed  Google Scholar 

  27. Lee DH, Kim EY, Park S, Phi JH, Kim SK, Cho BK, et al. Reclosure of surgically induced spinal open neural tube defects by the intraamniotic injection of human embryonic stem cells in chick embryos 24 hours after lesion induction. J Neurosurg. 2006;105(2 Suppl):127–33.

    PubMed  Google Scholar 

  28. Lee DH, Phi JH, Kim SK, Cho BK, Kim SU, Wang KC. Enhanced reclosure of surgically induced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cells into the amniotic cavity. Neurosurgery. 2010;67(1):129–35; discussion 35.

  29. Li H, Gao F, Ma L, Jiang J, Miao J, Jiang M, et al. Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med. 2012;16(7):1606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Miao J, Zhao G, Wu D, Liu B, Wei X, et al. Different expression patterns of growth factors in rat fetuses with spina bifida aperta after in utero mesenchymal stromal cell transplantation. Cytotherapy. 2014;16(3):319–30.

    Article  CAS  PubMed  Google Scholar 

  31. • Wei X, Ma W, Gu H, Liu D, Luo W, Bai Y, et al. Transamniotic mesenchymal stem cell therapy for neural tube defects preserves neural function through lesion-specific engraftment and regeneration. Cell Death Dis. 2020;11(7):523. This manuscript shed lights on the protective role of MSC-based therapeutics on the nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Wei X, Ma W, Gu H, Liu D, Luo W, Cao S, et al. Intra-amniotic mesenchymal stem cell therapy improves the amniotic fluid microenvironment in rat spina bifida aperta fetuses. Cell Prolif. 2023;56(2):e13354. This study highlights the potential of intra-amniotic injection of stem cells to create a pro-regenerative environment in utero.

    Article  CAS  PubMed  Google Scholar 

  33. Wei X, Cao S, Ma W, Zhang C, Gu H, Liu D, et al. Intra-amniotic delivery of CRMP4 siRNA improves mesenchymal stem cell therapy in a rat spina bifida model. Mol Ther Nucleic Acids. 2020;20:502–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma W, Wei X, Gu H, Li H, Guan K, Liu D, et al. Sensory neuron differentiation potential of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta. Birth Defects Res A Clin Mol Teratol. 2015;103(9):772–9.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27(4):77.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Nguyen LT, Le HT, Nguyen KT, Bui HT, Nguyen APT, Ngo DV, et al. Outcomes of autologous bone marrow mononuclear cell administration in the treatment of neurologic sequelae in children with spina bifida. Stem Cell Res Ther. 2023;14(1):115. This manuscript reports data from a clinical trial showing the impact of autologous MSC transplantation on SB comorbidities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cunha C, Almeida CR, Almeida MI, Silva AM, Molinos M, Lamas S, et al. Systemic delivery of bone marrow mesenchymal stem cells for in situ intervertebral disc regeneration. Stem Cells Transl Med. 2017;6(3):1029–39.

    Article  CAS  PubMed  Google Scholar 

  38. Goto T, Murata M, Nishida T, Terakura S, Kamoshita S, Ishikawa Y, et al. Phase I clinical trial of intra-bone marrow cotransplantation of mesenchymal stem cells in cord blood transplantation. Stem Cells Transl Med. 2021;10(4):542–53.

    Article  PubMed  Google Scholar 

  39. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. 2019;8(6):504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Corradetti B, Lange-Consiglio A, Barucca M, Cremonesi F, Bizzaro D. Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix. Cell Prolif. 2011;44(4):330–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lovati AB, Corradetti B, Lange Consiglio A, Recordati C, Bonacina E, Bizzaro D, et al. Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Vet Res Commun. 2011;35(2):103–21.

    Article  PubMed  Google Scholar 

  42. Arfianti A, Ulfah, Hutabarat LS, Ivana GA, Budiarti AD, Sahara NS, et al. Hipoxia modulates the secretion of growth factors of human umbilical cord-derived mesenchymal stem cells. Biomedicine (Taipei). 2023;13(3):49–56.

    PubMed  Google Scholar 

  43. Lv L, Cui EH, Wang B, Li LQ, Hua F, Lu HD, et al. Multiomics reveal human umbilical cord mesenchymal stem cells improving acute lung injury via the lung-gut axis. World J Stem Cells. 2023;15(9):908–30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yuan M, Yao L, Chen P, Wang Z, Liu P, Xiong Z, et al. Human umbilical cord mesenchymal stem cells inhibit liver fibrosis via the microRNA-148a-5p/SLIT3 axis. Int Immunopharmacol. 2023;125(Pt A):111134.

    Article  CAS  PubMed  Google Scholar 

  45. Corradetti B, Correani A, Romaldini A, Marini MG, Bizzaro D, Perrini C, et al. Amniotic membrane-derived mesenchymal cells and their conditioned media: potential candidates for uterine regenerative therapy in the horse. PLoS ONE. 2014;9(10):e111324.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Lange-Consiglio A, Corradetti B, Bertani S, Notarstefano V, Perrini C, Marini MG, et al. Peculiarity of porcine amniotic membrane and its derived cells: a contribution to the study of cell therapy from a large animal model. Cell Reprogram. 2015;17(6):472–83.

    Article  CAS  PubMed  Google Scholar 

  47. Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, et al. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen Med. 2012;6(8):622–35.

    Article  CAS  PubMed  Google Scholar 

  48. Corradetti B, Meucci A, Bizzaro D, Cremonesi F, Lange CA. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction. 2013;145(4):391–400.

    Article  CAS  PubMed  Google Scholar 

  49. Gaggi G, Di Credico A, Guarnieri S, Mariggio MA, Di Baldassarre A, Ghinassi B. Human mesenchymal amniotic fluid stem cells reveal an unexpected neuronal potential differentiating into functional spinal motor neurons. Front Cell Dev Biol. 2022;10:936990.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martin MM, Chan M, Antoine C, Bar-El L, Bornstein E, Young BK. Clinical potential of human amniotic fluid stem cells. J Perinat Med. 2023;51(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  51. Zong L, Wang D, Long Y, Liu X, Tao A, Zhang L, et al. Human amniotic fluid stem cells exert immunosuppressive effects on T lymphocytes in allergic rhinitis. Curr Stem Cell Res Ther. 2023;18(8):1113–9.

    Article  CAS  PubMed  Google Scholar 

  52. Vaiasicca S, Melone G, James DW, Quintela M, Preziuso A, Finnell RH, et al. Transcriptomic analysis of stem cells from chorionic villi uncovers the impact of chromosomes 2, 6 and 22 in the clinical manifestations of Down syndrome. Stem Cell Res Ther. 2023;14(1):265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Kulubya ES, Clark K, Hao D, Lazar S, Ghaffari-Rafi A, Karnati T, et al. The unique properties of placental mesenchymal stromal cells: a novel source of therapy for congenital and acquired spinal cord injury. Cells. 2021;10(11):2837. This study discusses the regenerative properties of MSC from placental tissues, with focus on the protective effect they exert against spinal cord injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang A, Brown EG, Lankford L, Keller BA, Pivetti CD, Sitkin NA, et al. Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele. Stem Cells Transl Med. 2015;4(6):659–69.

    Article  PubMed  PubMed Central  Google Scholar 

  56. • Abe Y, Ochiai D, Sato Y, Otani T, Fukutake M, Ikenoue S, et al. Amniotic fluid stem cells as a novel strategy for the treatment of fetal and neonatal neurological diseases. Placenta. 2021;104:247–52. In this manuscript, MSCs from the amniotic fluid are proposed as potential therapeutics for the treatment of fetal and neonatal neurological disorders.

    Article  CAS  PubMed  Google Scholar 

  57. Abe Y, Ochiai D, Masuda H, Sato Y, Otani T, Fukutake M, et al. In utero amniotic fluid stem cell therapy protects against myelomeningocele via spinal cord coverage and hepatocyte growth factor secretion. Stem Cells Transl Med. 2019;8(11):1170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kabagambe S, Keller B, Becker J, Goodman L, Pivetti C, Lankford L, et al. Placental mesenchymal stromal cells seeded on clinical grade extracellular matrix improve ambulation in ovine myelomeningocele. J Pediatr Surg. 2017;S0022–3468(17):30654–1.

    Google Scholar 

  59. Vanover M, Pivetti C, Lankford L, Kumar P, Galganski L, Kabagambe S, et al. High density placental mesenchymal stromal cells provide neuronal preservation and improve motor function following in utero treatment of ovine myelomeningocele. J Pediatr Surg. 2019;54(1):75–9.

    Article  PubMed  Google Scholar 

  60. • Theodorou CM, Jackson JE, Stokes SC, Pivetti CD, Kumar P, Paxton ZJ, et al. Early investigations into improving bowel and bladder function in fetal ovine myelomeningocele repair. J Pediatr Surg. 2022;57(5):941–8. In this experimental study, the authors show the therapeutic potential of placental MSCs seeded onto a collagen membrane to induce regeneration in a fetal model of spina bifida.

    Article  PubMed  PubMed Central  Google Scholar 

  61. • Jackson JE, Pivetti C, Stokes SC, Theodorou CM, Kumar P, Paxton ZJ, et al. Placental mesenchymal stromal cells: preclinical safety evaluation for fetal myelomeningocele repair. J Surg Res. 2021;267:660–8. This study evaluates the safety of MSC injection to be potentially used for spina bifida repair.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Worley JR, Parker GC. Effects of environmental stressors on stem cells. World J Stem Cells. 2019;11(9):565–77.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45(11):e54.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turner CG, Klein JD, Wang J, Thakor D, Benedict D, Ahmed A, et al. The amniotic fluid as a source of neural stem cells in the setting of experimental neural tube defects. Stem Cells Dev. 2013;22(4):548–53.

    Article  CAS  PubMed  Google Scholar 

  66. Zieba J, Walczak M, Gordiienko O, Gerstenhaber JA, Smith GM, Krynska B. Altered amniotic fluid levels of hyaluronic acid in fetal rats with myelomeningocele: understanding spinal cord injury. J Neurotrauma. 2019;36(12):1965–73.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zieba J, Miller A, Gordiienko O, Smith GM, Krynska B. Clusters of amniotic fluid cells and their associated early neuroepithelial markers in experimental myelomeningocele: Correlation with astrogliosis. PLoS ONE. 2017;12(3):e0174625.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Xie M, Xiong W, She Z, Wen Z, Abdirahman AS, Wan W, et al. Immunoregulatory effects of stem cell-derived extracellular vesicles on immune cells. Front Immunol. 2020;11:13.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, et al. The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment. Stem Cell Rev Rep. 2021;18(3):933–51.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Peng P, Yu H, Xing C, Tao B, Li C, Huang J, et al. Exosomes-mediated phenotypic switch of macrophages in the immune microenvironment after spinal cord injury. Biomed Pharmacother. 2021;144:112311.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23(4):236–50.

    Article  CAS  PubMed  Google Scholar 

  74. Wu JY, Li YJ, Hu XB, Huang S, Xiang DX. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions. Drug Deliv. 2021;28(1):162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics. 2021;13(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Corradetti B, Gonzalez D, Mendes Pinto I, Conlan RS. Editorial: Exosomes as therapeutic systems. Front Cell Dev Biol. 2021;9:714743.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matei AC, Antounians L, Zani A. Extracellular vesicles as a potential therapy for neonatal conditions: state of the art and challenges in clinical translation. Pharmaceutics. 2019;11(8)404.

  78. Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging exosomes and exosomal MiRNAs in spinal cord injury. Front Cell Dev Biol. 2021;9:703989.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pishavar E, Trentini M, Zanotti F, Camponogara F, Tiengo E, Zanolla I, et al. Exosomes as neurological nanosized machines. ACS Nanosci Au. 2022;2(4):284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sidoryk-Wegrzynowicz M, Dabrowska-Bouta B, Sulkowski G, Struzynska L. Nanosystems and exosomes as future approaches in treating multiple sclerosis. Eur J Neurosci. 2021;54(9):7377–404.

    Article  CAS  PubMed  Google Scholar 

  81. Ruppert KA, Nguyen TT, Prabhakara KS, Toledano Furman NE, Srivastava AK, Harting MT, et al. Human mesenchymal stromal cell-derived extracellular vesicles modify microglial response and improve clinical outcomes in experimental spinal cord injury. Sci Rep. 2018;8(1):480.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  82. Clark KC, Wang D, Kumar P, Mor S, Kulubya E, Lazar SV, et al. The molecular mechanisms through which placental mesenchymal stem cell-derived extracellular vesicles promote myelin regeneration. Adv Biol (Weinh). 2022;6(2):e2101099.

    Article  PubMed  Google Scholar 

  83. • Zhou W, Silva M, Feng C, Zhao S, Liu L, Li S, et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis. Stem Cell Res Ther. 2021;12(1):174. This study evaluates the therapeutic role of extracellular vesicles from human placental stem cells on spinal cord repair and highlights potential mechanisms of action.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kumar P, Becker JC, Gao K, Carney RP, Lankford L, Keller BA, et al. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes. FASEB J. 2019;33(5):5836–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. •• Ma L, Wei X, Ma W, Liu Y, Wang Y, He Y, et al. Neural stem cell-derived exosomal Netrin1 contributes to neuron differentiation of mesenchymal stem cells in therapy of spinal bifida aperta. Stem Cells Transl Med. 2022;11(5):539–51. This study analyzes exosomes derived from neural stem cells and highlights Netrin1 as a potential target for the development of formulations aiming at inducing spina bifida repair.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nii T, Katayama Y. Biomaterial-assisted regenerative medicine. Int J Mol Sci. 2021;22(16):8657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mann LK, Won JH, Trenton NJ, Garnett J, Snowise S, Fletcher SA, et al. Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model. J Neurosurg Spine. 2019;32(2):321–31.

    Article  PubMed  Google Scholar 

  88. Zhu YT, Li F, Zhang Y, Chen SY, Tighe S, Lin SY, et al. HC-HA/PTX3 Purified from human amniotic membrane reverts human corneal fibroblasts and myofibroblasts to keratocytes by activating BMP signaling. Invest Ophthalmol Vis Sci. 2020;61(5):62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mann LK, Won JH, Patel R, Bergh EP, Garnett J, Bhattacharjee MB, et al. Allografts for skin closure during in utero spina bifida repair in a sheep model. J Clin Med. 2021;10(21):4928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Snowise S, Mann L, Morales Y, Moise KJ Jr, Johnson A, Fletcher S, et al. Cryopreserved human umbilical cord versus biocellulose film for prenatal spina bifida repair in a physiologic rat model. Prenat Diagn. 2017;37(5):473–81.

    Article  CAS  PubMed  Google Scholar 

  91. Bardill J, Williams SM, Shabeka U, Niswander L, Park D, Marwan AI. An injectable reverse thermal gel for minimally invasive coverage of mouse myelomeningocele. J Surg Res. 2019;235:227–36.

    Article  CAS  PubMed  Google Scholar 

  92. Athiel Y, Jouannic JM, Mauffre V, Dehan C, Adam C, Blot S, et al. Allogenic umbilical cord-derived mesenchymal stromal cells improve motor function in prenatal surgical repair of myelomeningocele: an ovine model study. BJOG. 2023. https://doi.org/10.1111/1471-0528.17624.

    Article  PubMed  Google Scholar 

  93. Watanabe M, Li H, Kim AG, Weilerstein A, Radu A, Davey M, et al. Complete tissue coverage achieved by scaffold-based tissue engineering in the fetal sheep model of myelomeningocele. Biomaterials. 2016;76:133–43.

    Article  CAS  PubMed  Google Scholar 

  94. Bardill J, Gilani A, Laughter MR, Mirsky D, O’Neill B, Park D, et al. Preliminary results of a reverse thermal gel patch for fetal ovine myelomeningocele repair. J Surg Res. 2022;270:113–23.

    Article  PubMed  Google Scholar 

  95. Oria M, Tatu RR, Lin CY, Peiro JL. In vivo evaluation of novel PLA/PCL polymeric patch in rats for potential spina bifida coverage. J Surg Res. 2019;242:62–9.

    Article  CAS  PubMed  Google Scholar 

  96. Farrelly JS, Bianchi AH, Ricciardi AS, Buzzelli GL, Ahle SL, Freedman-Weiss MR, et al. Alginate microparticles loaded with basic fibroblast growth factor induce tissue coverage in a rat model of myelomeningocele. J Pediatr Surg. 2019;54(1):80–5.

    Article  PubMed  Google Scholar 

  97. Freedman-Weiss MR, Wu D, Maassel N, Ullrich SJ, Ahle SL, Roberts K, et al. Engineering alginate microparticles for optimized accumulation in fetal rat myelomeningocele. J Pediatr Surg. 2022;57(3):544–50.

    Article  PubMed  Google Scholar 

  98. Mazzone L, Moehrlen U, Ochsenbein-Kolble N, Pontiggia L, Biedermann T, Reichmann E, et al. Bioengineering and in utero transplantation of fetal skin in the sheep model: a crucial step towards clinical application in human fetal spina bifida repair. J Tissue Eng Regen Med. 2020;14(1):58–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception of the work; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Bruna Corradetti.

Ethics declarations

Conflict of Interest

Bruna Corradetti and Francesca Taraballi declare that they have no conflict of interest. Richard Finnell was formerly associated with TeratOmic Consulting, a now defunct organization. He also receives travel funds for editorial board meetings of the journal Reproductive and Developmental Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corradetti, B., Taraballi, F. & Finnell, R.H. Stem Cell-Based Strategies for Prenatal Treatment of Spina Bifida and the Promise of Cell-Free, Minimally Invasive Approaches. Curr Stem Cell Rep (2024). https://doi.org/10.1007/s40778-024-00233-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40778-024-00233-y

Keywords

Navigation