Skip to main content

Advertisement

Log in

Stem Cell Metabolism and Diet

  • Metabolism and Stem Cells (O Yilmaz & J Roper, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diet has profound impacts on health and longevity. Evidence is emerging to suggest that diet impinges upon the metabolic pathways in tissue-specific stem cells to influence health and disease. Here, we review the similarities and differences in the metabolism of stem cells from several tissues and highlight the mitochondrial metabolic checkpoint in stem cell maintenance and aging. We discuss how diet engages the nutrient sensing metabolic pathways and impacts stem cell maintenance. Finally, we explore the therapeutic implications of dietary and metabolic regulation of stem cells.

Recent Findings

Stem cell transition from quiescence to proliferation is associated with a metabolic switch from glycolysis to mitochondrial OXPHOS and the mitochondrial metabolic checkpoint is critically controlled by the nutrient sensors SIRT2, SIRT3, and SIRT7 in hematopoietic stem cells. Intestine stem cell homeostasis during aging and in response to diet is critically dependent on fatty acid metabolism and ketone bodies and is influenced by the niche mediated by the nutrient sensor mTOR.

Summary

Nutrient sensing metabolic pathways critically regulate stem cell maintenance during aging and in response to diet. Elucidating the molecular mechanisms underlying dietary and metabolic regulation of stem cells provides novel insights for stem cell biology and may be targeted therapeutically to reverse stem cell aging and tissue degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr. 1935;10:63–79.

  2. Carlson AJ, Hoelzel F. Apparent prolongation of the lifespan of rats by intermittent fasting. J Nutr. 1946;31:363–75.

  3. Carlson AJ, Hoelzel F. Apparent prolongation of the life span of rats by intermittent fasting - PubMed [Internet]. J Nutr. 1946 [cited 2020 May 19]:363–75.

  4. Orentreich N, Matias JR, DeFelice A, Zimmerman JA. Low methionine ingestion by rats extends life span. J Nutr. 1993;123(2):269–74.

    CAS  PubMed  Google Scholar 

  5. Mašek J, Fábry P. High-fat diet and the development of obesity in albino rats. Experientia. 1959;15(11):444–5.

    PubMed  Google Scholar 

  6. Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science. 2010;328:321–6.

  8. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63.

  9. Harman DA. a theory based on free radical and radiation chemistry. J Gerontol. 1957;2:298–300.

  10. Luo H, Chiang HH, Louw M, Susanto A, Chen D. Nutrient sensing and the oxidative stress response. Trends Endocrinol Metab. 2017;28:449–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013;3(2):319–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, et al. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science (80-). 2015;347(6228):1374–7.

    CAS  Google Scholar 

  13. • Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, et al. Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep. 2019;26(4):945–954.e4 Demonstrates that mitochondrial stress leads to stem cell aging through the NRLP3 inflammasome activation and caspase 1-mediated cell death.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med. 2008;205:2397–408.

  15. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A. 1999;96:3120–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol [Internet]. 2010;20(1):1–17.

    CAS  Google Scholar 

  17. Wang YAZ, Plane JM, Jiang P, Zhou CJ, Deng W. Concise review: quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells. 2011;29(6):907–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding WY, Huang J, Wang H. Waking up quiescent neural stem cells: molecular mechanisms and implications in neurodevelopmental disorders. PLOS Genet [Internet]. 2020;16(4):e1008653.

    CAS  Google Scholar 

  19. Cavallucci V, Fidaleo M, Pani G. Neural stem cells and nutrients: poised between quiescence and exhaustion. Trends Endocrinol Metab Elsevier Inc. 2016;27:756–69.

  20. Simsek T, Kocabas F, Zheng J, DeBerardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7:380–90.

  21. Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol Nature Publishing Group. 2014;15:243–56.

  22. Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell [Internet]. 2015;17(3):360–72.

    CAS  Google Scholar 

  23. Maryanovich M, Zaltsman Y, Ruggiero A, Goldman A, Shachnai L, Zaidman SL, et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun. 2015;6:7901.

  24. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood. 2010;115(20):4030–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128(2):325–39.

    CAS  PubMed  Google Scholar 

  26. Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009;461:537–41.

  27. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431(7011):997–1002.

    CAS  PubMed  Google Scholar 

  28. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.

    CAS  PubMed  Google Scholar 

  29. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    CAS  PubMed  Google Scholar 

  30. Yu WM, Liu X, Shen J, Jovanovic O, Pohl EE, Gerson SL, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell. 2013;12(1):62–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mohrin M, Widjaja A, Liu Y, Luo H, Chen D. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell. 2018;17:e12756.

  32. Haneline LS, White H, Yang FC, Chen S, Orschell C, Kapur R, et al. Genetic reduction of class Ia PI-3 kinase activity alters fetal hematopoiesis and competitive repopulating ability of hematopoietic stem cells in vivo. Blood. 2006;107:1375–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen C, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2:ra75.

  34. Magri L, Cambiaghi M, Cominelli M, Alfaro-Cervello C, Cursi M, Pala M, et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex–associated lesions. Cell Stem Cell. 2011;9:447–62.

  35. Kassai H, Sugaya Y, Noda S, Nakao K, Maeda T, Kano M, et al. Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep. 2014;7:1626–39.

    CAS  PubMed  Google Scholar 

  36. Paliouras GN, Hamilton LK, Aumont A, Joppe SE, Barnabe-Heider F, Fernandes KJ. Mammalian target of rapamycin signaling is a key regulator of the transitamplifying progenitor pool in the adult and aging forebrain. J Neurosci. 2012;32(43):15012–26.

  37. Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.

    CAS  PubMed  Google Scholar 

  38. • Rodríguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J, Pras-Raves M, et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature. 2017;543(7645):424–7 Shows highly proliferative intestine stem cells rely on mitochondrial OXPHOS for ATP production, which is supported by glycolysis in the niche.

    PubMed  Google Scholar 

  39. Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing Enteroendocrine cells. Cell Stem Cell. 2017;20:177–190.e4.

    CAS  PubMed  Google Scholar 

  40. Li N, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327:542–5.

  41. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–4.

  42. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402.

    CAS  PubMed  Google Scholar 

  44. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pistollato F, Chen H-L, Schwartz PH, Basso G, Panchision DM. Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci [Internet]. 2007;35(3):424–35.

    CAS  Google Scholar 

  46. Moreno M, Fernández V, Monllau JM, Borrell V, Lerin C, de la Iglesia N. Transcriptional profiling of hypoxic neural stem cells identifies calcineurin-NFATc4 signaling as a major regulator of neural stem cell biology. Stem Cell Rep [Internet]. 2015/07/30. 2015;5(2):157–65.

    CAS  Google Scholar 

  47. Kim DY, Rhee I, Paik J. Metabolic circuits in neural stem cells. Cell Mol Life Sci [Internet]. 2014/07/19. 2014;71(21):4221–41.

    CAS  Google Scholar 

  48. Mohrin M, Chen D. The mitochondrial metabolic checkpoint and aging of hematopoietic stem cells. Curr Opin Hematol. 2016;23:318–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, Saez B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468:659–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468:701–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468:653–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Beckervordersandforth R, Ebert B, Schäffner I, Moss J, Fiebig C, Shin J, et al. Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron. 2017;93:560–73.

  53. Yan WW, Liang YL, Zhang QX, Wang D, Lei MZ, Qu J, et al. Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Rep. 2018;19:e46377.

  54. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12(6):662–7.

    CAS  PubMed  Google Scholar 

  55. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143(5):802–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, et al. An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab. 2020;31(3):580–591.e5.

    CAS  PubMed  Google Scholar 

  57. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (80-). 2016;352(6292):1436–43.

    CAS  Google Scholar 

  58. Berger E, Rath E, Yuan D, Waldschmitt N, Khaloian S, Allgäuer M, et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun. 2016;7:13171.

  59. Ito K, Turcotte R, Cui J, Zimmerman SE, Pinho S, Mizoguchi T, et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science. 2016;354:1156–60.

  60. Khacho M, Clark A, Svoboda DS, Azzi J, MacLaurin JG, Meghaizel C, et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell. 2016;19:232–47.

  61. Luchsinger LL, De Almeida MJ, Corrigan DJ, Mumau M, Snoeck HW. Mitofusin 2 maintains haematopoietic stem cells with extensive lymphoid potential. Nature. 2016;529:528–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Moog F. The lining of the small intestine. Sci Am. 1981;245(5):154–76.

    CAS  PubMed  Google Scholar 

  63. Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, et al. MTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486(7404):490–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. • Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD, Bauer-Rowe KE, et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell. 2018;22(5):769–778.e4 Demonstrates intestine stem cells critically depends on fatty acid metabolism and is responsive to diet..

    CAS  PubMed  PubMed Central  Google Scholar 

  65. • Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong SJ, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531(7592):53–8 Demonstrates intestine stem cells critically depends on fatty acid metabolism and is responsive to diet.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. • Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, et al. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell. 2019;178(5):1115–1131.e15 Demonstrates intestine stem cells critically depends on ketone bodies and is responsive to diet.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gebert N, Cheng CW, Kirkpatrick JM, Di Fraia D, Yun J, Schädel P, et al. Regionspecific proteome changes of the intestinal epithelium during aging and dietary restriction. Cell Rep. 2020;31.

  68. Chen J, Astle CM, Harrison DE. Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol. 2003;31(11):1097–103.

    CAS  PubMed  Google Scholar 

  69. Tang D, Tao S, Chen Z, Koliesnik IO, Calmes PG, Hoerr V, et al. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J Exp Med. 2016;213(4):535–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Apple DM, Mahesula S, Fonseca RS, Zhu C, Kokovay E. Calorie restriction protects neural stem cells from age-related deficits in the subventricular zone. Aging (Albany NY) [Internet]. 2019;11(1):115–26.

    CAS  Google Scholar 

  71. Lee J, Duan W, Long JM, Ingram DK, Mattson MP. Dietary restriction increases the number of newly generated neural cells, and BDNF expression, in the dentate gyrus of rats. J Mol Neurosci. 2000;15(2):99–108.

    CAS  PubMed  Google Scholar 

  72. Kaptan Z, Akgün-Dar K, Kapucu A, Dedeakayoğulları H, Batu Ş, Üzüm G. Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Res [Internet]. 2015;1618:194–204.

    CAS  Google Scholar 

  73. Hornsby AKE, Redhead YT, Rees DJ, Ratcliff MSG, Reichenbach A, Wells T, et al. Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner. Psychoneuroendocrinology [Internet]. 2015/09/25. 2016;63:198–207.

    CAS  Google Scholar 

  74. Kim Y, Sehee K, Chanyang K, Takahiro S, Masayasu K, Seungjoon P. Ghrelin is required for dietary restriction-induced enhancement of hippocampal neurogenesis: lessons from ghrelin knockout mice. Endocr J [Internet]. 2015;62(3):269–75.

    CAS  Google Scholar 

  75. Cheng CW, Adams GB, Perin L, Wei M, Zhou X, Lam BS, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell- based regeneration and reverse immunosuppression. Cell Stem Cell. 2014;14(6):810–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mendelsohn AR, Larrick JW. Prolonged fasting/refeeding promotes hematopoietic stem cell regeneration and rejuvenation. Rejuvenation Res. 2014;17(4):385–9.

    CAS  PubMed  Google Scholar 

  77. Baik SH, Rajeev V, Fann DYW, Jo DG, Arumugam TV. Intermittent fasting increases adult hippocampal neurogenesis. Brain Behav. 2020;10(1):1–6.

    Google Scholar 

  78. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev [Internet]. 2016/10/31. 2017;39:46–58.

    Google Scholar 

  79. Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab [Internet]. 2015/06/18. 2015;22(1):86–99.

    CAS  Google Scholar 

  80. Singer K, DelProposto J, Lee Morris D, Zamarron B, Mergian T, Maley N, et al. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol Metab. 2014;3(6):664–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li Y, Zhu S, Zhang Y, Liu T, Su L, Zhang Q, et al. High fat diet-induced obesity exacerbates hematopoiesis deficiency and cytopenia caused by 5-fluorouracil via peroxisome proliferator-activated receptor γ. Exp Hematol. 2018;60(2018):30 39.e1.

    CAS  PubMed  Google Scholar 

  82. Van Den Berg SM, PSeijkens TT, HKusters PJ, Beckers L, DenToom M, Smeets E, et al. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J. 2016;30(5):1779–88.

    PubMed  Google Scholar 

  83. Hermetet F, Buffière A, Aznague A, Pais de Barros JP, Bastie JN, Delva L, et al. High-fat diet disturbs lipid raft/TGF-β signaling-mediated maintenance of hematopoietic stem cells in mouse bone marrow. Nat Commun. 2019;10(1):1–11.

  84. Park HR, Park M, Choi J, Park K-Y, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett [Internet]. 2010;482(3):235–9.

    CAS  Google Scholar 

  85. Robison LS, Albert NM, Camargo LA, Anderson BM, Salinero AE, Riccio DA, et al. High-fat diet-induced obesity causes sex-specific deficits in adult hippocampal neurogenesis in mice. eNeuro. 2020;7(1).

  86. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell Cell Press. 2013;153:1194.

  87. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013;13:376–89.

  88. Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20:870–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. • Pentinmikko N, Iqbal S, Mana M, Andersson S, Cognetta AB, Suciu RM, et al. mNotum produced by Paneth cells attenuates regeneration of aged intestinal epitheliu. Nature. 2019;571(7765):398–402 Shows intestine stem cell aging is regulated by mTOR signaling in the niche.

    CAS  PubMed  Google Scholar 

  90. Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science. 2005;310:1641.

  91. Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, et al. SIRT7 represses myc activity to suppress er stress and prevent fatty liver disease. Cell Rep. 2013;5:654–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 2007;5(8):1750–62.

    CAS  Google Scholar 

  93. • Vannini N, Campos V, Girotra M, Trachsel V, Rojas-Sutterlin S, Tratwal J, et al. The NAD-booster nicotinamide riboside potently stimulates hematopoiesis through increased mitochondrial clearance. Cell Stem Cell. 2019;24:405–18. Shows the therapeutic potential of the mitochondrial metabolic checkpoint in stem cells.

  94. Igarashi M, Miura M, Williams E, Jaksch F, Kadowaki T, Yamauchi T, et al. NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell. 2019;18:e12935.

Download references

Funding

This study is supported by the NIH R01DK 117481 (D.C.), R01DK101885 (D.C.), R01AG063404 (D.C.), R01AG 063389 (D.C.), and the National Institute of Food and Agriculture (D.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danica Chen.

Ethics declarations

Conflict of Interest

Marine Barthez, Zehan Song, Chih Ling Wang, and Danica Chen have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metabolism and Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barthez, M., Song, Z., Wang, C.L. et al. Stem Cell Metabolism and Diet. Curr Stem Cell Rep 6, 119–125 (2020). https://doi.org/10.1007/s40778-020-00180-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-020-00180-4

Keywords

Navigation