Skip to main content

Calorie Restriction Mimetics and Adult Stem Cells

  • Chapter
  • First Online:
Nutrition, Food and Diet in Ageing and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 14))

  • 2033 Accesses

Abstract

The regulation of nutrition and metabolism plays a pivotal role in regulating the aging process. The nutrition is a critical external factor influencing the development of aging and associated disorders. One of the well-known dietary interventions to slow aging and reduce mortality is calorie restriction. The results of the range of studies indicate that calorie restriction facilitates the increase in life expectancy and a decrease in the aging processes. The effect of calorie restriction on the aging process has been associated with a wide range of the reactions in different types of cells, particularly the stem cells. This Chapter discusses the role of the stem cells in aging processes and associated disorders in the context of calorie restriction strategies. It encompasses the analysis of the results of preclinical and clinical studies on the relationship between the calorie restriction and adult stem cell function in order to understand the effects of calorie restriction on the health and longevity. The Chapter highlights the role of stem cells in neurogenesis, alterations in stem cell function under the influence of calorie restriction. In addition, the potential of the calorie restriction mimetics as aging modulators has been discussed too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu P, Serna JDC, Munhoz AC, Kowaltowski AJ (2020) Calorie restriction changes mu scle satellite cell proliferation in a manner independent of metabolic modulation. Mech Ageing Dev 192:111362

    Google Scholar 

  • Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8:215–225

    Google Scholar 

  • Alway SE, Myers MJ, Mohamed JS (2014) Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 6:246

    Google Scholar 

  • Ammar HI, Shamseldeen AM, Shoukry HS, Ashour H, Kamar SS, Rashed LA, Fadel M, Srivastava A, Dhingra Sa (2021) Metformin impairs homing ability and efficacy of mesenchymal stem cells for cardiac repair in streptozotocin-induced diabetic cardiomyopathy in rats. Am J Physiol-Heart Circ Physiol 320(4):H1290–H1302. https://doi.org/10.1152/ajpheart.00317.2020

    Article  Google Scholar 

  • Apple DM, Mahesula S, Fonseca RS, Zhu C, Kokovay E (2019) Calorie restriction protects neural stem cells from age-related deficits in the subventricular zone. Aging 11:115–126

    Google Scholar 

  • Avolio E, Gianfranceschi G, Cesselli D, Caragnano A, Athanasakis E, Katare R, Meloni M, Palma A, Barchiesi A, Vascotto C, Toffoletto B, Mazzega E, Finato N, Aresu G, Livi U, Emanueli C, Scoles G, Beltrami CA, Madeddu P, Beltrami AP (2014) Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction. Stem Cells 32:2373–2385

    Google Scholar 

  • Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322

    Google Scholar 

  • Bennett BT, Mohamed JS, Alway SE (2013) Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLOS ONE 8:e83518

    Google Scholar 

  • Boldrin L, Ross JA, Whitmore C, Doreste B, Beaver C, Eddaoudi A, Pearce DJ, Morgan JE (2017) The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 7:5160

    Google Scholar 

  • Bondolfi L, Ermini F, Long JM, Ingram DK, Jucker M (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25:333–340

    Google Scholar 

  • Bosutti A, Degens H (2015) The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction. Sci Rep 5:8093

    Google Scholar 

  • Boyette LB, Tuan RS (2014) Adult stem cells and diseases of aging. J Clin Med 3

    Google Scholar 

  • Bruens L, Ellenbroek SIJ, Suijkerbuijk SJE, Azkanaz M, Hale AJ, Toonen P, Flanagan DJ, Sansom OJ, Snippert HJ, van Rheenen J (2020) Calorie restriction increases the number of competing stem cells and decreases mutation retention in the intestine. Cell Rep 32:107

    Google Scholar 

  • Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V (2021) The potential properties of natural compounds in cardiac stem cell activation: their role in myocardial regeneration. Nutrients 13:275

    Google Scholar 

  • Catic A (2018) Cellular metabolism and aging. Prog Mol Biol Transl Sci 155:85–107

    Google Scholar 

  • Cerletti M, Jang YC, Finley LWS, Haigis MC, Wagers AJ (2012) Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10:515–519

    Google Scholar 

  • Cerqueira FM, Kowaltowski AJ (2010) Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 9:424–430

    Google Scholar 

  • Chang NC (2020) Autophagy and stem cells: self-eating for self-renewal. Front Cell Dev Biol 8

    Google Scholar 

  • Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Sign 2:ra75-ra75.

    Google Scholar 

  • Chen J, Astle CM, Harrison DE (2003) Hematopoietic senescence is postponed and hematopoietic stem cell function is enhanced by dietary restriction. Exp Hematol 31:1097–1103

    Google Scholar 

  • Chiba T, Tsuchiya T, Komatsu T, Mori R, Hayashi H, Shimokawa I (2010) Development of calorie restriction mimetics as therapeutics for obesity, diabetes, inflammatory and neurodegenerative diseases. Curr Genomics 11:562–567

    Google Scholar 

  • Chung KW, Chung HY (2019) The effects of calorie restriction on autophagy: role on aging intervention. Nutrients 11:2923

    Google Scholar 

  • Chung MM, Chen YL, Pei D, Cheng YC, Sun B, Nicol CJ, Yen CH, Chen HM, Liang YJ, Chiang MC (2015) The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease 1852:720–731

    Google Scholar 

  • Clevers H (2015) What is an adult stem cell? Science 350:1319–1320

    Google Scholar 

  • Dadwal P, Mahmud N, Sinai L, Azimi A, Fatt M, Wondisford FE, Miller FD, Morshead CM (2015) Activating endogenous neural precursor cells using metformin leads to neural repair and functional recovery in a model of childhood brain injury. Stem Cell Rep 5:166–173

    Google Scholar 

  • Desai AK, Grossberg GT, Chibnall JT (2010) Healthy brain aging: a road map. Clin Geriatr Med 26:1–16

    Google Scholar 

  • Dias IR, Santos CDS, Magalhães CODE, de Oliveira LRS, Peixoto MFD, de Sousa RAL, Cassilhas RC (2020) Does calorie restriction improve cognition? IBRO Rep 9:37–45

    Google Scholar 

  • Ding H, Xu X, Qin X, Yang C, Feng Q (2016) Resveratrol promotes differentiation of mouse embryonic stem cells to cardiomyocytes. Cardiovasc Ther 34:283–289

    Google Scholar 

  • Du G, Qiao Y, Zhuo Z, Zhou J, Li X, Liu Z, Li Y, Chen H (2020) Lipoic acid rejuvenates aged intestinal stem cells by preventing age-associated endosome reduction. EMBO Rep 21:e49583–e49583

    Google Scholar 

  • Epel ES, Lithgow GJ (2014) Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity. J Gerontol Ser A 69:S10–S16

    Google Scholar 

  • Fabbiano S, Suárez-Zamorano N, Rigo D, Veyrat-Durebex C, Dokic AS, Didier JC, Trajkovski M (2016) Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab 24:434–446

    Google Scholar 

  • Fatt M, Hsu K, He L, Wondisford F, Miller FD, Kaplan DR, Wang J (2015) Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Rep 5:988–995

    Google Scholar 

  • Flanagan EW, Most J, Mey JT, Redman LM (2020) Calorie restriction and aging in humans. Annu Rev Nutr 40:105–133

    Google Scholar 

  • Fontán-Lozano A, López-Lluch G, Delgado-García JM, Navas P, Carrión AM (2008) Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol Neurobiol 38:167–177

    Google Scholar 

  • Forni MF, Peloggia J, Braga TT, Chinchilla JEO, Shinohara J, Navas CA, Camara NOS, Kowaltowski AJ (2017) Caloric restriction promotes structural and metabolic changes in the skin. Cell Rep 20:2678–2692

    Google Scholar 

  • Franceschi C, Ostan R, Santoro A (2018) Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr 38:329–356

    Google Scholar 

  • Fukada S, Ma Y, Uezumi A (2014) Adult stem cell and mesenchymal progenitor theories of aging. Front Cell Dev Biol 2:10

    Google Scholar 

  • Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger.” Cell Metab 7:200–203

    Google Scholar 

  • Gilbert EAB, Morshead CM (2019) Metformin activates neural stem and progenitor cells in the spinal cord and improves functional outcomes following injury. FASEB J 33:208.3

    Google Scholar 

  • Glenny E, Liu J, Touvron M, Vance N, Magness S, Bulik C, Van LL, Carroll I (2020) Severe calorie restriction induces gut microbiota-dependent intestinal stem cell dysfunction. Curr Dev Nutr 4:1558–1558

    Google Scholar 

  • Gonzalez MA, Bernad A (2012) Characteristics of adult stem cells. Adv Exp Med Biol 741:103–120

    Google Scholar 

  • Goodell MA, Rando TA (2015) Stem cells and healthy aging. Science 350:1199–1204

    Google Scholar 

  • Gorbunov N, Petrovski G, Gurusamy N, Ray D, Kim DH, Das DK (2012) Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cells. J Cell Mol Med 16:174–184

    Google Scholar 

  • Guerra GP, Rubin MA, Mello CF (2016) Modulation of learning and memory by natural polyamines. Pharmacol Res 112:99–118

    Google Scholar 

  • Gurusamy N, Ray D, Lekli I, Das DK (2010) Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med 14:2235–2239

    Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    Google Scholar 

  • He D, Wu H, Xiang J, Ruan X, Peng P, Ruan Y, Chen Y-G, Wang Y, Yu Q, Zhang H, Habib SL, de Pinho RA, Liu H, Li B (2020) Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nat Commun 11:37

    Google Scholar 

  • Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78:361–369

    Google Scholar 

  • Hertel J, Friedrich N, Wittfeld K, Pietzner M, Budde K, van der Auwera S, Lohmann T, Teumer A, Völzke H, Nauck M, Grabe HJ (2016) Measuring biological age via metabonomics: the metabolic age score. J Proteome Res 15:400–410

    Google Scholar 

  • Igarashi M, Guarente L (2016) mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166:436–450

    Google Scholar 

  • Igarashi M, Miura M, Williams E, Jaksch F, Kadowaki T, Yamauchi T, Guarente L (2019) NAD+ supplementation rejuvenates aged gut adult stem cells. Aging Cell 18:12935

    Google Scholar 

  • Ingram DK, Anson RM, de Cabo R, Mamczarz J, Zhu M, Mattison J, Lane MA, Roth GS (2004) Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci 1019:412–423

    Google Scholar 

  • Ingram DK, Roth GS (2015) Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res Rev 20:46–62

    Google Scholar 

  • Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, Decabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    Google Scholar 

  • Jackson JR, Ryan MJ, Alway SE (2011) Long-term supplementation with resveratrol alleviates oxidative stress but does not attenuate sarcopenia in aged mice. J Gerontol Ser A 66A:751–764

    Google Scholar 

  • Jiang LL, Liu L (2020) Effect of metformin on stem cells: molecular mechanism and clinical prospect. World J Stem Cells 12:1455–1473

    Google Scholar 

  • Jones DL, Rando TA (2011) Emerging models and paradigms for stem cell ageing. Nat Cell Biol 13:506–512

    Google Scholar 

  • Kaptan Z, Akgün-Dar K, Kapucu A, Dedeakayoğulları H, Batu Ş, Üzüm G (2015) Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Res 1618:194–204

    Google Scholar 

  • Kawakami Y, Hambright WS, Takayama K, Mu X, Lu A, Cummins JH, Matsumoto T, Yurube T, Kuroda R, Kurosaka M, Fu FH, Robbins PD, Niedernhofer LJ, Huard J (2019) Rapamycin rescues age-related changes in muscle-derived stem/progenitor cells from progeroid mice. Mol Therapy Methods Clin Dev 14:64–76

    Google Scholar 

  • Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713

    Google Scholar 

  • Kishi T, Hirooka Y, Nagayama T, Isegawa K, Katsuki M, Takesue K, Sunagawa K (2014) Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor. Int Heart J 56:14–168

    Google Scholar 

  • Komatsu T, Park S, Hayashi H, Mori R, Yamaza H, Shimokawa I (2019) Mechanisms of calorie restriction: a review of genes required for the life-extending and tumor-inhibiting effects of calorie restriction. Nutrients 11:3068

    Google Scholar 

  • Kornienko JS, Smirnova IS, Pugovkina NA, Ivanova JS, Shilina MA, Grinchuk TM, Shatrova AN, Aksenov ND, Zenin VV, Nikolsky NN, Lyublinskaya OG (2019) High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep 9:1296

    Google Scholar 

  • Kumar V, Pandey A, Jahan S, Shukla RK, Kumar D, Srivastava A, Singh S, Rajpurohit CS, Yadav S, Khanna VK, Pant AB (2016) Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 6:28142

    Google Scholar 

  • Kusne Y, Goldberg EL, Parker SS, Hapak SM, Maskaykina IY, Chew WM, Limesand KH, Brooks HL, Price TJ, Sanai N, Nikolich-Zugich J, Ghosh S (2014) Contrasting effects of chronic, systemic treatment with mTOR inhibitors rapamycin and metformin on adult neural progenitors in mice. Age (dordr) 36:199–212

    Google Scholar 

  • Lane MA, Ingram DK, Roth GS (1998) 2-Deoxy-D-glucose feeding in rats mimics physiologic effects of calorie restriction. J Anti Aging Med 1:327–337

    Google Scholar 

  • Lazare S, Ausema A, Reijne AC, van Dijk G, van Os R, de Haan G (2017) Lifelong dietary intervention does not affect hematopoietic stem cell function. Exp Hematol 53:26–30

    Google Scholar 

  • Lee NK, Maclean HE (2011) Polyamines, androgens, and skeletal muscle hypertrophy. J Cell Physiol 226:1453–1460

    Google Scholar 

  • Li Z-H, Wang Y-L, Wang H-J, Wu J-H, Tan Y-Z (2020) Rapamycin-preactivated autophagy enhances survival and differentiation of mesenchymal stem cells after transplantation into infarcted myocardium. Stem Cell Rev Rep 16:344–356

    Google Scholar 

  • Licausi F, Hartman NW (2018) Role of mTOR complexes in neurogenesis. Int J Mol Sci 19:1544

    Google Scholar 

  • Ling L, Gu S, Cheng Y (2017) Resveratrol activates endogenous cardiac stem cells and improves myocardial regeneration following acute myocardial infarction. Mol Med Rep 15:1188–1194

    Google Scholar 

  • Liu H, Zhang S, Zhao L, Zhang Y, Li Q, Chai X, Zhang Y (2016) Resveratrol enhances cardiomyocyte differentiation of human induced pluripotent stem cells through inhibiting canonical WNT signal pathway and enhancing serum response factor-miR-1 axis. Stem Cells Int 2016:2524092–2524092

    Google Scholar 

  • Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193:257–266

    Google Scholar 

  • Locher JL, Goldsby TU, Goss AM, Kilgore ML, Gower B, Ard JD (2016) Calorie restriction in overweight older adults: do benefits exceed potential risks? Exp Gerontol 86:4–13

    Google Scholar 

  • Loeffler M, Roeder I (2002) Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models–a conceptual approach. Cells Tissues Organs 171:8–26

    Google Scholar 

  • López-Otín C, Galluzzi L, Freije JMP, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166:802–821

    Google Scholar 

  • Lu Q, Liu Y, Wang Y, Wang W, Yang Z, Li T, Tian Y, Chen P, Ma K, Jia Z, Zhou C (2017) Rapamycin efficiently promotes cardiac differentiation of mouse embryonic stem cells. Biosci Rep 37:BSR20160552

    Google Scholar 

  • Luo Y, Li L, Zou P, Wang J, Shao L, Zhou D, Liu L (2014) Rapamycin enhances long-term hematopoietic reconstitution of ex vivo expanded mouse hematopoietic stem cells by inhibiting senescence. Transplantation 97:20–29

    Google Scholar 

  • Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X, Li W, Esteban CR, Long X, Guo G, Chan P, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu G-H (2020) Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus Aging. Cell 180:984-1001.e22

    Google Scholar 

  • Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G (2019) Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29:592–610

    Google Scholar 

  • Madhyastha S, Sekhar S, Rao G (2013) Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed rats. Int J Dev Neurosci 31:580–585

    Google Scholar 

  • Maharajan N, Vijayakumar K, Jang C, Cho G-W (2020) Caloric restriction maintains stem cells through niche and regulates stem cell aging. J Mol Med 98:25–37

    Google Scholar 

  • Mai V, Colbert LH, Berrigan D, Perkins SN, Pfeiffer R, Lavigne JA, Lanza E, Haines DC, Schatzkin A, Hursting SD (2003) Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in ApcMin mice through different mechanisms. Cancer Res 63:1752

    Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Wang S (2013) mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 19:51–60

    Google Scholar 

  • Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM (2017) Metformin - a future therapy for neurodegenerative diseases : theme: drug discovery, development and delivery in alzheimer’s disease guest editor: davide brambilla. Pharm Res 34:2614–2627

    Google Scholar 

  • Martel J, Chang S-H, Wu C-Y, Peng H-H, Hwang T-L, Ko Y-F, Young JD, Ojcius DM (2021) Recent advances in the field of caloric restriction mimetics and anti-aging molecules. Ageing Res Rev 66:101240

    Google Scholar 

  • Matsui K, Ezoe S, Oritani K, Shibata M, Tokunaga M, Fujita N, Tanimura A, Sudo T, Tanaka H, McBurney MW, Matsumura I, Kanakura Y (2012) NAD-dependent histone deacetylase, SIRT1, plays essential roles in the maintenance of hematopoietic stem cells. Biochem Biophys Res Commun 418:811–817

    Google Scholar 

  • Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7

    Google Scholar 

  • Mazzoccoli G, Tevy MF, Borghesan M, Vergini MRD, Vinciguerra M (2014) Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 50:137–148

    Google Scholar 

  • Mehmel M, Jovanović N, Spitz U (2020) Nicotinamide riboside-the current state of research and therapeutic uses. Nutrients 12:1616

    Google Scholar 

  • Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201

    Google Scholar 

  • Mimeault M, Batra SK (2009) Aging of tissue-resident adult stem/progenitor cells and their pathological consequences. Panminerva Med 51:57–79

    Google Scholar 

  • Moriya J, Chen R, Yamakawa J-I, Sasaki K, Ishigaki Y, Takahashi T (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34:354–359

    Google Scholar 

  • Na HJ, Park JS, Pyo JH, Jeon HJ, Kim YS, Arking R, Yoo MA (2015) Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway. Mech Ageing Dev 149:8–18

    Google Scholar 

  • Na HJ, Pyo JH, Jeon HJ, Park JS, Chung HY, Yoo MA (2018) Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila. Biochem Biophys Res Commun 498:18–24

    Google Scholar 

  • Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schröder S, Adler T, Afonso LC, Aguilar-Pimentel JA, Becker L, Garrett L, Hans W, Hettich MM, Holtmeier R, Hölter SM, Moreth K, Prehn C, Puk O, Rácz I, Rathkolb B, Rozman J, Naton B, Ordemann R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Ehninger G, Graw J, Höfler H, Klingenspor M, Klopstock T, Ollert M, Stypmann J, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Ehninger D (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Invest 123:3272–3291

    Google Scholar 

  • Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR, Chalut K, van Wijngaarden P, Franklin RJM (2019) Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell stem cell 25:473-485 e8

    Google Scholar 

  • Ould-Brahim F, Sarma SN, Syal C, Lu KJ, Seegobin M, Carter A, Jeffers MS, Doré C, Stanford WL, Corbett D, Wang J (2018) Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev 27:1085–1096

    Google Scholar 

  • Paliouras GN, Hamilton LK, Aumont A, Joppé SE, Barnabé-Heider F, Fernandes KJL (2012) Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci 32:15012

    Google Scholar 

  • Parikh I, Guo J, Chuang K-H, Zhong Y, Rempe RG, Hoffman JD, Armstrong R, Bauer B, Hartz AMS, Lin A-L (2016) Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging 8:2814–2826

    Google Scholar 

  • Park HR, Kong KH, Yu BP, Mattson MP, Lee J (2012) Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J Biol Chem 287:42588–42600

    Google Scholar 

  • Park J-H, Glass Z, Sayed K, Michurina TV, Lazutkin A, Mineyeva O, Velmeshev D, Ward WF, Richardson A, Enikolopov G (2013) Calorie restriction alleviates the age-related decrease in neural progenitor cell division in the aging brain. Eur J Neurosci 37:1987–1993

    Google Scholar 

  • Park JH, Lee NK, Lim HJ, Ji ST, Kim Y-J, Jang WB, Kim DY, Kang S, Yun J, Ha JS, Kim H, Lee D, Baek SH, Kwon S-M (2020) Pharmacological inhibition of mTOR attenuates replicative cell senescence and improves cellular function via regulating the STAT3-PIM1 axis in human cardiac progenitor cells. Exp Mol Med 52:615–628

    Google Scholar 

  • Park SE, Chung HY, Park YJ (2017) Calorie Restriction Facilitates Aging-Related Muscle Loss in the Aged Mice. The FASEB Journal 31:1b306

    Google Scholar 

  • Pavlidou T, Marinkovic M, Rosina M, Fuoco C, Vumbaca S, Gargioli C, Castagnoli L, Cesareni G (2019) Metformin delays satellite cell activation and maintains quiescence. Stem Cells Int 2019:5980465

    Google Scholar 

  • Pavlidou T, Rosina M, Fuoco C, Gerini G, Gargioli C, Castagnoli L, Cesareni G (2017) Regulation of myoblast differentiation by metabolic perturbations induced by metformin. PLOS ONE 12:e0182475

    Google Scholar 

  • Peña-Villalobos I, Casanova-Maldonado I, Lois P, Sabat P, Palma V (2019) Adaptive physiological and morphological adjustments mediated by intestinal stem cells in response to food availability in mice. Front Physiol 9:1821

    Google Scholar 

  • Qiu XX, Liu Y, Zhang YF, Guan YN, Jia QQ, Wang C, Liang H, Li YQ, Yang HT, Qin YW, Huang S, Zhao XX, Jing Q (2017) Rapamycin and CHIR99021 coordinate robust cardiomyocyte differentiation from human pluripotent stem cells via reducing p53-dependent apoptosis. J Am Heart Assoc 6:e005295

    Google Scholar 

  • Raman L, Kong X, Kernie SG (2013) Pharmacological inhibition of the mTOR pathway impairs hippocampal development in mice. Neurosci Lett 541:9–14

    Google Scholar 

  • Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY, Schreiber KH, Mackay VL, An EH, Strong R, Ladiges WC, Rabinovitch PS, Kaeberlein M, Kennedy BK (2012) Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4:144ra103

    Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Google Scholar 

  • Ratcliff M, Rees D, McGrady S, Buntwal L, Hornsby AKE, Bayliss J, Kent BA, Bussey T, Saksida L, Beynon AL, Howell OW, Morgan AH, Sun Y, Andrews ZB, Wells T, Davies JS (2019) Calorie restriction activates new adult born olfactory-bulb neurones in a ghrelin-dependent manner but acyl-ghrelin does not enhance subventricular zone neurogenesis. J Neuroendocrinol 31:e12755

    Google Scholar 

  • Ravussin Y, Leduc CA, Watanabe K, Leibel RL (2012) Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am J Physiol Regul Integr Comp Physiol 303:R438–R448

    Google Scholar 

  • Rimmelé P, Lofek-Czubek S, Ghaffari S (2014) Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity. Am J Hematol 89:E235–E238

    Google Scholar 

  • Romine J, Gao X, Xu X-M, So KF, Chen J (2015) The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation. Neurobiol Aging 36:1716–1726

    Google Scholar 

  • Ruddy RM, Adams KV, Morshead CM (2019) Age- and sex-dependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke. Sci Adv 5:eaax1912

    Google Scholar 

  • Santoro A, Martucci M, Conte M, Capri M, Franceschi C, Salvioli S (2020) Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res Reviews 64:101142

    Google Scholar 

  • Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, Brenner C, Masri S, Benitah SA, Sassone-Corsi P (2017) Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170:664-677.e11

    Google Scholar 

  • Schmuck EG, Mulligan JD, Saupe KW (2011) Caloric restriction attenuates the age-associated increase of adipose-derived stem cells but further reduces their proliferative capacity. Age (dordr) 33:107–118

    Google Scholar 

  • Schüler SC, Gebert N, Ori A (2020) Stem cell aging: the upcoming era of proteins and metabolites. Mechanisms of Ageing and Development 190:111288

    Google Scholar 

  • Schultz MB, Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143:3

    Google Scholar 

  • Sciarretta Sebastiano, Forte Maurizio, Castoldi Francesca, Frati Giacomo, Versaci Francesco, Sadoshima Junichi, Kroemer Guido, Maiuri Maria Chiara (2020) Caloric restriction mimetics for the treatment of cardiovascular diseases. Cardiovasc Res 117(6):1434–1449. https://doi.org/10.1093/cvr/cvaa297

    Article  Google Scholar 

  • Selman C, Sinclair A, Pedroni SMA, Irvine EE, Michie AM, Withers DJ (2016) Evidence that hematopoietic stem cell function is preserved during aging in long-lived S6K1 mutant mice. Oncotarget 7:29937–29943

    Google Scholar 

  • Senesi P, Montesano A, Luzi L, Codella R, Benedini S, Terruzzi I (2016) Metformin treatment prevents sedentariness related damages in mice. J Diabetes Res 2016:8274689

    Google Scholar 

  • Sharpless NE, Depinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713

    Google Scholar 

  • Shen C, Cheng W, Yu P, Wang L, Zhou L, Zeng L, Yang Q (2016) Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro. Mol Med Rep 14:3646–3654

    Google Scholar 

  • Sheng Y, Xia F, Chen L, Lv Y, Lv S, Yu J, Liu J, Ding G (2020) Differential responses of white adipose tissue and brown adipose tissue to calorie restriction during aging. J Gerontol Ser A 76:393–399

    Google Scholar 

  • Shintani H, Shintani T, Ashida H, Sato M (2018) Calorie Restriction mimetics: upstream-type compounds for modulating glucose metabolism. Nutrients 10:1821

    Google Scholar 

  • Signor C, Girardi BA, Wendel AL, Frühauf PKS, Pillat MM, Ulrich H, Mello CF, Rubin MA (2017) Spermidine improves the persistence of reconsolidated fear memory and neural differentiation in vitro: Involvement of BDNF. Neurobiol Learn Memory 140:82–91

    Google Scholar 

  • Sigrist SJ, Carmona-Gutierrez D, Gupta VK, Bhukel A, Mertel S, Eisenberg T, Madeo F (2014) Spermidine-triggered autophagy ameliorates memory during aging. Autophagy 10:178–179

    Google Scholar 

  • Smith JA, Daniel R (2012) Stem cells and aging: a chicken-or-the-egg issue? Aging Dis 3:260–268

    Google Scholar 

  • Speakman JR (2013) Evolutionary perspectives on the obesity epidemic: adaptive, maladaptive, and neutral viewpoints. Annu Rev Nutr 33:289–317

    Google Scholar 

  • Stockinger J, Maxwell N, Shapiro D, Decabo R, Valdez G (2018) Caloric restriction mimetics slow aging of neuromuscular synapses and muscle fibers. J Gerontol Ser A 73:21–28

    Google Scholar 

  • Storlien L, Oakes ND, Kelley DE (2004) Metabolic flexibility. Proc Nutr Soc 63:363–368

    Google Scholar 

  • Tang D, Tao S, Chen Z, Koliesnik IO, Calmes PG, Hoerr V, Han B, Gebert N, Zörnig M, Löffler B, Morita Y, Rudolph KL (2016) Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J Exp Med 213:535–553

    Google Scholar 

  • Thornton KJ, Chapalamadugu KC, Doumit ME, Murdoch GK (2013) Polyamines enhance satellite cell activation and expression of myogenic regulatory factors. FASEB J 27:1146.7

    Google Scholar 

  • Troca-Marín JA, Alves-Sampaio A, Montesinos ML (2011) An increase in basal BDNF provokes hyperactivation of the akt-mammalian target of rapamycin pathway and deregulation of local dendritic translation in a mouse model of down’s syndrome. J Neurosci 31:9445

    Google Scholar 

  • van Cauwenberghe C, Vandendriessche C, Libert C, Vandenbroucke RE (2016) Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 27:300–319

    Google Scholar 

  • Wang J, Gallagher D, Devito LM, Cancino GI, Tsui D, He L, Keller GM, Frankland PW, Kaplan DR, Miller FD (2012) Metformin activates an atypical pkc-cbp pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11(1):23–35

    Google Scholar 

  • Wilkinson AC, Yamazaki S (2018) The hematopoietic stem cell diet. Int J Hematol 107:634–641

    Google Scholar 

  • Xie W-Q, Xiao W-F, Tang K, Wu Y-X, Hu P-W, Li Y-S, Duan Y, Lv S (2020) Caloric restriction: implications for sarcopenia and potential mechanisms. Aging 12:24441–24452

    Google Scholar 

  • Xu T-T, Li H, Dai Z, Lau GK, Li B-Y, Zhu W-L, Liu X-Q, Liu H-F, Cai W-W, Huang S-Q, Wang Q, Zhang S-J (2020) Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging 12:6401–6414

    Google Scholar 

  • Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L (2014) mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. Behav Brain Res 264:82–90

    Google Scholar 

  • Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, Nielsen GP, Mino-Kenudson M, Zukerberg LR, Bhan AK, Deshpande V, Sabatini DM (2012) mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486:490–495

    Google Scholar 

  • Yousefi M, Nakauka-Ddamba A, Berry CT, Li N, Schoenberger J, Simeonov KP, Cedeno RJ, Yu Z, Lengner CJ (2018) Calorie restriction governs intestinal epithelial regeneration through cell-autonomous regulation of mTORC1 in reserve stem cells. Stem Cell Rep 10:703–711

    Google Scholar 

  • Yousuf Y, Datu A, Barnes B, Amini-Nik S, Jeschke MG (2020) Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Res Ther 11:18

    Google Scholar 

  • Zhang L, Gong H, Sun Q, Zhao R, Jia Y (2018) Spermidine-activated satellite cells are associated with hypoacetylation in ACVR2B and Smad3 binding to myogenic genes in mice. J Agric Food Chem 66:540–550

    Google Scholar 

  • Zhang Q-S, Tang W, Deater M, Phan N, Marcogliese AN, Li H, Al-Dhalimy M, Major A, Olson S, Monnat RJ, Grompe M (2016) Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 128(24):2774–2784

    Google Scholar 

  • Zhang QS, Marquez-Loza L, Eaton L, Duncan AW, Goldman DC, Anur P, Watanabe-Smith K, Rathbun RK, Fleming WH, Bagby GC, Grompe M (2010) Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol. Blood 116:5140–5148

    Google Scholar 

  • Zheng B, Wang J, Tang L, Shi J, Zhu D (2017) mTORC1 and mTORC2 play different roles in regulating cardiomyocyte differentiation from embryonic stem cells. Int J Dev Biol 61:65–72

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09058312) and the CRP grant of Nazarbayev University No. 091019CRP2113.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

All authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umbayev, B., Safarova, Y., Yermekova, A., Saliev, T. (2021). Calorie Restriction Mimetics and Adult Stem Cells. In: Rattan, S.I.S., Kaur, G. (eds) Nutrition, Food and Diet in Ageing and Longevity. Healthy Ageing and Longevity, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-83017-5_25

Download citation

Publish with us

Policies and ethics