Skip to main content
Log in

Dynamic Regulation of Hematopoietic Stem Cells by Bone Marrow Niches

  • Cancer and Stem Cells (D Starczynowski and G Huang, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hematopoietic stem cells (HSCs) reside in a specialized microenvironment called the HSC niche. While key components of the niche have been known for several years, recent advances have identified several additional cell types that regulate HSC in the bone marrow (BM). Here, we review our current understanding of the components and dynamics of the HSC niche.

Recent Findings

While the niche has been considered a stable structure, recent advances clearly show that the niche is regulated in a dynamic manner to control HSC traffic and function. Moreover, the niche can rapidly remodel in response to insults to the BM in a process controlled by positive and negative regulators.

Summary

Multiple niche cells have been shown to be dynamically regulated by systemic and local signals to influence how the niche controls HSC function. Elucidating how different components of the niche coordinate to orchestrate HSC behavior is essential to understand how the hematopoietic system adjusts blood cell production to the demands of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495:231–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. • Cordeiro Gomes A, Hara T, Lim VY, Herndler-Brandstetter D, Nevius E, Sugiyama T, et al. Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation. Immunity. 2016;45:1219–31. Functional identification of a niche for common lymphoid progenitors.

    Article  PubMed  CAS  Google Scholar 

  3. Chow A, Huggins M, Ahmed J, et al. CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19:429–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sapoznikov A, Pewzner-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung S. Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol. 2008;9:388–95.

    Article  PubMed  CAS  Google Scholar 

  5. Taichman RS. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179:1677–82.

    Article  PubMed  CAS  Google Scholar 

  6. Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood. 1996;87:518–24.

    PubMed  CAS  Google Scholar 

  7. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    Article  PubMed  CAS  Google Scholar 

  9. Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125:2621–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ramalingam P, Poulos MG, Butler JM. Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Curr Opin Hematol. 2017;24:289–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Doan PL, Chute JP. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia. 2012;26:54–62.

    Article  PubMed  CAS  Google Scholar 

  13. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502:637–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. • Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526:126–30. Imaging studies that challenge the idea that quiescent HSCs associate with arterioles.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  PubMed  CAS  Google Scholar 

  16. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481:457–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210:1351–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hanoun M, Frenette PS. This niche is a maze; an amazing niche. Cell Stem Cell. 2013;12:391–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. •• Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A, et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol. 2017;19:214–23. Together with (22), this is the strongest evidence for functionally distinct arteriolar and sinusoidal HSC niches.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. •• Itkin T, Gur-Cohen S, Spencer JA, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323–8. Together with (21), this is the strongest evidence for functionally distinct arteriolar and sinusoidal HSC niches.

    Article  PubMed  CAS  Google Scholar 

  23. Katayama Y, Battista M, Kao W-M, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–21.

    Article  PubMed  CAS  Google Scholar 

  24. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.

    Article  PubMed  CAS  Google Scholar 

  25. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20:1315–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20:1321–6.

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med. 2015;212:2133–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15:533–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. •• Leiva M, Quintana JA, Ligos JM, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222. First demonstration that HSPCs are a component of the HSC niche.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.

    Article  PubMed  CAS  Google Scholar 

  31. •• Kusumbe AP, Ramasamy SK, Itkin T, Mäe MA, Langen UH, Betsholtz C, et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature. 2016;532:380–4. Demonstration that expansion of arterioles by modulating Notch signaling also expands HSC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208:261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med. 2011;208:251–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116:4815–28.

    Article  PubMed  CAS  Google Scholar 

  35. McCabe A, Zhang Y, Thai V, Jones M, Jordan MB, MacNamara KC. Macrophage-lineage cells negatively regulate the hematopoietic stem cell pool in response to interferon gamma at steady state and during infection. Stem Cells. 2015;33:2294–305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R, A-González N, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell. 2013;153:1025–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. •• Chen X, Deng H, Churchill MJ, et al. Bone marrow myeloid cells regulate myeloid-biased hematopoietic stem cells via a histamine-dependent feedback loop. Cell Stem Cell. 2017;21:747–760.e7. First report that demonstrates that myeloid cells directly regulates HSC.

    Article  PubMed  CAS  Google Scholar 

  38. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460:259–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Spindler TJ, Tseng AW, Zhou X, Adams GB. Adipocytic cells augment the support of primitive hematopoietic cells in vitro but have no effect in the bone marrow niche under homeostatic conditions. Stem Cells Dev. 2014;23:434–41.

    Article  PubMed  CAS  Google Scholar 

  40. •• Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19:891–903. First description of adipocytes as positive regulators of regeneration. Challenges previous concepts about adipocyte function in the BM.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood. 2008;111:1173–81.

    Article  PubMed  CAS  Google Scholar 

  42. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33:387–99.

    Article  PubMed  CAS  Google Scholar 

  43. Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SEW, Wakkach A, Blin-Wakkach C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med. 2012;209:537–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12:657–64.

    Article  PubMed  CAS  Google Scholar 

  45. Lymperi S, Ersek A, Ferraro F, Dazzi F, Horwood NJ. Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood. 2011;117:1540–9.

    Article  PubMed  CAS  Google Scholar 

  46. Miyamoto K, Yoshida S, Kawasumi M, Hashimoto K, Kimura T, Sato Y, et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med. 2011;208:2175–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. •• Silberstein L, Goncalves KA, Kharchenko PV, Turcotte R, Kfoury Y, Mercier F, et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 2016;19:530–43. Identification of embigin and osteolineage cells as a novel niche factor and niche cell, respectively.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. • Goncalves KA, Silberstein L, Li S, Severe N, Hu MG, Yang H, et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell. 2016;166:894–906. Identification of angiogenin as a novel HSPC regulator through a completely novel mechanism.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wright DE. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294:1933–6.

    Article  PubMed  CAS  Google Scholar 

  50. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell. 2007;131:994–1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lucas D, Battista M, Shi PA, Isola L, Frenette PS. Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell. 2008;3:364–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452:442–7.

    Article  PubMed  CAS  Google Scholar 

  53. Kollet O, Vagima Y, D’Uva G, et al. Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia. 2013;27:2006–15.

    Article  PubMed  CAS  Google Scholar 

  54. Hooper AT, Butler JM, Nolan DJ, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 2009;4:263–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bowers E, Slaughter A, Frenette PS, Kuick R, Pello OM, Lucas D. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat Med. 2018;24:95–102.

    Article  PubMed  CAS  Google Scholar 

  56. Doan PL, Russell JL, Himburg HA, Helms K, Harris JR, Lucas J, et al. Tie2(+) bone marrow endothelial cells regulate hematopoietic stem cell regeneration following radiation injury. Stem Cells. 2013;31:327–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med. 2013;19:695–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. • Poulos MG, Ramalingam P, Gutkin MC, et al. Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nat Commun. 2016;7:13829. Identification of NF-κB signaling as a negative regulator of vascular niche regeneration.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. •• Zhou BO, Ding L, Morrison SJ. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. Elife. 2015;4:e05521. First report showing that hematopoietic cells can directly crosstalk with the microenvironment.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Olson TS, Caselli A, Otsuru S, Hofmann TJ, Williams R, Paolucci P, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013;121:5238–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6:251–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A, et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 2013;4:1022–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. • Guo P, Poulos MG, Palikuqi B, et al. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. J Clin Invest. 2017; https://doi.org/10.1172/JCI92309. Identification of a novel proregenerative molecule in the regenerating endothelium.

  64. Himburg HA, Yan X, Doan PL, Quarmyne M, Micewicz E, McBride W, et al. Pleiotrophin mediates hematopoietic regeneration via activation of RAS. J Clin Invest. 2014;124:4753–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M, et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013;19:295–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. • Himburg HA, Doan PL, Quarmyne M, Yan X, Sasine J, Zhao L, et al. Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med. 2017;23:91–9. Identification of a novel proregenerative molecule in the vascular niche.

    Article  PubMed  CAS  Google Scholar 

  67. Brenet F, Kermani P, Spektor R, Rafii S, Scandura JM. TGFβ restores hematopoietic homeostasis after myelosuppressive chemotherapy. J Exp Med. 2013;210:623–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize to those whose work was not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lucas.

Ethics declarations

Conflict of Interest

Margot May, Anastasiya Slaughter, and Daniel Lucas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer and Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, M., Slaughter, A. & Lucas, D. Dynamic Regulation of Hematopoietic Stem Cells by Bone Marrow Niches. Curr Stem Cell Rep 4, 201–208 (2018). https://doi.org/10.1007/s40778-018-0132-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-018-0132-x

Keywords

Navigation