Current Stem Cell Reports

, Volume 3, Issue 4, pp 320–332 | Cite as

The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury

  • Chang-Kyung Kim
  • Vincent W. Yang
  • Agnieszka B. Bialkowska
Radiation Biology and Stem Cells (CD Porada and PF Wilson Jr, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Radiation Biology and Stem Cells

Abstract

Purpose of Review

Intestinal epithelial cells show remarkable plasticity in regenerating the epithelium following radiation injury. In this review, we explore the regenerative capacity and mechanisms of various populations of intestinal stem cells (ISCs) in response to ionizing radiation.

Recent Findings

Ionizing radiation targets mitotic cells that include “active” ISCs and progenitor cells. Lineage-tracing experiments showed that several different cell types identified by a single or combination of markers are capable of regenerating the epithelium, confirming that ISCs exhibit a high degree of plasticity. However, the identities of the contributing cells marked by various markers require further validation.

Summary

Following radiation injury, quiescent and/or radioresistant cells become active stem cells to regenerate the epithelium. Looking forward, understanding the mechanisms by which ISCs govern tissue regeneration is crucial to determine therapeutic approaches to promote intestinal epithelial regeneration following injury.

Keywords

Intestinal epithelial cells Stem cells Irradiation Regeneration 

Abbreviations

ALPI

Alkaline phosphatase

ASCL2

Achaete-scute family BHLH transcription factor 2

ATOH1 (MATH1)

Atonal BHLH transcription factor 1

BMI1

B lymphoma Mo-MLV insertion region 1 homolog polycomb ring finger proto-oncogene

DCLK1

Doublecortin like kinase 1

DLL1

Delta-like canonical notch ligand 1

DTR

Diphtheria toxin receptor

GFP

Green fluorescent protein

HOPX

HOP homeobox

KLF4

Krüppel-like factor 4

KRT19

Keratin 19

LGR5

Leucine-rich repeat-containing G protein-coupled receptor 5

LRIG1

Leucine-rich repeats and immunoglobulin like domains 1

MEX3A

Mex-3 RNA binding family member A

mTERT

Telomerase reverse transcriptase

OLFM4

Olfactomedin 4

PROM1

Prominin 1

PUMA

p53 Upregulated modulator of apoptosis

RFP

Red fluorescent protein

SMOC2

SPARC-related modular calcium binding 2

SOX9

SRY-box 9

STAT5

Signal transducer and activator of transcription 5

Notes

Acknowledgments

Work from our laboratory was supported by grants from the National Institutes of Health (DK052230, DK093680, CA084197, and CA172113 awarded to V.W.Y.).

Compliance with Ethical Standards

Conflict of Interest

Chang-Kyung Kim, Vincent W. Yang, and Agnieszka B. Bialkowska declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15(4):360–71.  https://doi.org/10.1634/theoncologist.2009-S104.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gastrointestinal Complications (PDQ(R)). Health Professional Version. Bethesda: PDQ Cancer Information Summaries; 2002.Google Scholar
  3. 3.
    Yu J. Intestinal stem cell injury and protection during cancer therapy. Transl Cancer Res. 2013;2(5):384–96.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.  https://doi.org/10.3322/caac.21332.PubMedCrossRefGoogle Scholar
  5. 5.
    Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16(4):234–49.  https://doi.org/10.1038/nrc.2016.18.PubMedCrossRefGoogle Scholar
  6. 6.
    Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15(1):19–33.  https://doi.org/10.1038/nrm3721.PubMedCrossRefGoogle Scholar
  7. 7.
    Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell. 2012;11(4):452–60.  https://doi.org/10.1016/j.stem.2012.09.009.PubMedCrossRefGoogle Scholar
  8. 8.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.  https://doi.org/10.1038/nature06196.PubMedCrossRefGoogle Scholar
  9. 9.
    van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136(5):903–12.  https://doi.org/10.1016/j.cell.2009.01.031.PubMedCrossRefGoogle Scholar
  10. 10.
    van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H. OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology. 2009;137(1):15–7.  https://doi.org/10.1053/j.gastro.2009.05.035.PubMedCrossRefGoogle Scholar
  11. 11.
    Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31(14):3079–91.  https://doi.org/10.1038/emboj.2012.166.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457(7229):603–7.  https://doi.org/10.1038/nature07589.PubMedCrossRefGoogle Scholar
  13. 13.
    Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST. Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1108–18.  https://doi.org/10.1152/ajpgi.00004.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci. 2002;115(Pt 11):2381–8.PubMedGoogle Scholar
  15. 15.
    Fre S, Hannezo E, Sale S, Huyghe M, Lafkas D, Kissel H, et al. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice. PLoS One. 2011;6(10):e25785.  https://doi.org/10.1371/journal.pone.0025785.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.  https://doi.org/10.1038/ng.722.PubMedCrossRefGoogle Scholar
  17. 17.
    Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A. 2011;108(1):179–84.  https://doi.org/10.1073/pnas.1013004108.PubMedCrossRefGoogle Scholar
  18. 18.
    Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST. SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology. 2015;149(6):1553–1563 e10.  https://doi.org/10.1053/j.gastro.2015.07.004.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012;149(1):146–58.  https://doi.org/10.1016/j.cell.2012.02.042.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334(6061):1420–4.  https://doi.org/10.1126/science.1213214.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells. 2008;26(3):630–7.  https://doi.org/10.1634/stemcells.2007-0621.PubMedCrossRefGoogle Scholar
  22. 22.
    Asfaha S, Hayakawa Y, Muley A, Stokes S, Graham TA, Ericksen RE, et al. Krt19(+)/Lgr5(−) cells are radioresistant cancer-initiating stem cells in the colon and intestine. Cell Stem Cell. 2015;16(6):627–38.  https://doi.org/10.1016/j.stem.2015.04.013.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K, Begthel H, et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell. 2016;18(2):203–13.  https://doi.org/10.1016/j.stem.2016.01.001.PubMedCrossRefGoogle Scholar
  24. 24.
    van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 2012;14(10):1099–104.  https://doi.org/10.1038/ncb2581.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A. 2012;109(2):466–71.  https://doi.org/10.1073/pnas.1118857109.PubMedCrossRefGoogle Scholar
  26. 26.
    Itzkovitz S, Lyubimova A, Blat IC, Maynard M, van Es J, Lees J, et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat Cell Biol. 2011;14(1):106–14.  https://doi.org/10.1038/ncb2384.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kim TH, Saadatpour A, Guo G, Saxena M, Cavazza A, Desai N, et al. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5(+) intestinal stem cells. Cell Rep. 2016;16(8):2053–60.  https://doi.org/10.1016/j.celrep.2016.07.056.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hua G, Thin TH, Feldman R, Haimovitz-Friedman A, Clevers H, Fuks Z, et al. Crypt base columnar stem cells in small intestines of mice are radioresistant. Gastroenterology. 2012;143(5):1266–76.  https://doi.org/10.1053/j.gastro.2012.07.106.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zhu Y, Huang YF, Kek C, Bulavin DV. Apoptosis differently affects lineage tracing of Lgr5 and Bmi1 intestinal stem cell populations. Cell Stem Cell. 2013;12(3):298–303.  https://doi.org/10.1016/j.stem.2013.01.003.PubMedCrossRefGoogle Scholar
  30. 30.
    Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell. 2014;14(2):149–59.  https://doi.org/10.1016/j.stem.2013.11.008.PubMedCrossRefGoogle Scholar
  31. 31.
    VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 2012;139(3):488–97.  https://doi.org/10.1242/dev.070763.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schuijers J, van der Flier LG, van Es J, Clevers H. Robust cre-mediated recombination in small intestinal stem cells utilizing the olfm4 locus. Stem Cell Rep. 2014;3(2):234–41.  https://doi.org/10.1016/j.stemcr.2014.05.018.CrossRefGoogle Scholar
  33. 33.
    Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol. 2015;402(1):98–108.  https://doi.org/10.1016/j.ydbio.2015.03.012.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sampson LL, Davis AK, Grogg MW, Zheng Y. mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice. FASEB J. 2016;30(3):1263–75.  https://doi.org/10.1096/fj.15-278606.PubMedCrossRefGoogle Scholar
  35. 35.
    Schuijers J, Junker JP, Mokry M, Hatzis P, Koo BK, Sasselli V, et al. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell. 2015;16(2):158–70.  https://doi.org/10.1016/j.stem.2014.12.006.PubMedCrossRefGoogle Scholar
  36. 36.
    Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488(7413):665–9.  https://doi.org/10.1038/nature11308.PubMedCrossRefGoogle Scholar
  37. 37.
    Fafilek B, Krausova M, Vojtechova M, Pospichalova V, Tumova L, Sloncova E, et al. Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology. 2013;144(2):381–91.  https://doi.org/10.1053/j.gastro.2012.10.048.PubMedCrossRefGoogle Scholar
  38. 38.
    Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol. 2012;14(4):401–8.  https://doi.org/10.1038/ncb2464.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Li N, Nakauka-Ddamba A, Tobias J, Jensen ST, Lengner CJ. Mouse label-retaining cells are molecularly and functionally distinct from reserve intestinal stem cells. Gastroenterology. 2016;151(2):298–310 e7.  https://doi.org/10.1053/j.gastro.2016.04.049.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gracz AD, Fuller MK, Wang F, Li L, Stelzner M, Dunn JC, et al. Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells. 2013;31(9):2024–30.  https://doi.org/10.1002/stem.1391.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Li N, Yousefi M, Nakauka-Ddamba A, Jain R, Tobias J, Epstein JA, et al. Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Rep. 2014;3(5):876–91.  https://doi.org/10.1016/j.stemcr.2014.09.011.CrossRefGoogle Scholar
  42. 42.
    Breault DT, Min IM, Carlone DL, Farilla LG, Ambruzs DM, Henderson DE, et al. Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci U S A. 2008;105(30):10420–5.  https://doi.org/10.1073/pnas.0804800105.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40(7):915–20.  https://doi.org/10.1038/ng.165.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478(7368):255–9.  https://doi.org/10.1038/nature10408.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    •• Jadhav U, Saxena M, O'Neill NK, Saadatpour A, Yuan GC, Herbert Z, et al. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell. 2017;21(1):65–77 e5.  https://doi.org/10.1016/j.stem.2017.05.001. Utilized chromatin structure analysis to determine that Bmi1- GFP + cells are preterminal enteroendocrine cells with the open chromatin in regions that are lineage-restricted. The chromatin accessibility of these cells allows them to dedifferentiate to stem cells when necessary. PubMedCrossRefGoogle Scholar
  46. 46.
    Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Koo BK, Lim HS, Chang HJ, Yoon MJ, Choi Y, Kong MP, et al. Notch signaling promotes the generation of EphrinB1-positive intestinal epithelial cells. Gastroenterology. 2009;137(1):145–155, 55 e1-3.  https://doi.org/10.1053/j.gastro.2009.03.046.PubMedCrossRefGoogle Scholar
  48. 48.
    Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8(5):511–24.  https://doi.org/10.1016/j.stem.2011.02.020.PubMedCrossRefGoogle Scholar
  49. 49.
    Jarde T, Kass L, Staples M, Lescesen H, Carne P, Oliva K, et al. ERBB3 positively correlates with intestinal stem cell markers but marks a distinct non proliferative cell population in colorectal cancer. PLoS One. 2015;10(9):e0138336.  https://doi.org/10.1371/journal.pone.0138336.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Snippert HJ, van Es JH, van den Born M, Begthel H, Stange DE, Barker N, et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology. 2009;136(7):2187–2194 e1.  https://doi.org/10.1053/j.gastro.2009.03.002.PubMedCrossRefGoogle Scholar
  51. 51.
    Kayahara T, Sawada M, Takaishi S, Fukui H, Seno H, Fukuzawa H, et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett. 2003;535(1–3):131–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Maria Cambuli F, Rezza A, Nadjar J, Plateroti M. Brief report: musashi1-eGFP mice, a new tool for differential isolation of the intestinal stem cell populations. Stem Cells. 2013;31(10):2273–8.  https://doi.org/10.1002/stem.1428.PubMedCrossRefGoogle Scholar
  53. 53.
    Yousefi M, Li N, Nakauka-Ddamba A, Wang S, Davidow K, Schoenberger J, et al. Msi RNA-binding proteins control reserve intestinal stem cell quiescence. J Cell Biol. 2016;215(3):401–13.  https://doi.org/10.1083/jcb.201604119.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Van Landeghem L, Santoro MA, Krebs AE, Mah AT, Dehmer JJ, Gracz AD, et al. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am J Physiol Gastrointest Liver Physiol. 2012;302(10):G1111–32.  https://doi.org/10.1152/ajpgi.00519.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Pereira B, Sousa S, Barros R, Carreto L, Oliveira P, Oliveira C, et al. CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness. Nucleic Acids Res. 2013;41(7):3986–99.  https://doi.org/10.1093/nar/gkt087.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    •• Barriga FM, Montagni E, Mana M, Mendez-Lago M, Hernando-Momblona X, Sevillano M, et al. Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell. 2017;20(6):801-16 e7.  https://doi.org/10.1016/j.stem.2017.02.007. Identified a subpopulation of slow-cycling LGR5+ cells with high levels of MEX3A expression. These cells are relatively more resistant to chemotherapy and radiation injury. CrossRefGoogle Scholar
  57. 57.
    Gerbe F, Brulin B, Makrini L, Legraverend C, Jay P. DCAMKL-1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology. 2009;137(6):2179–2180; author reply 80-1.  https://doi.org/10.1053/j.gastro.2009.06.072.PubMedCrossRefGoogle Scholar
  58. 58.
    May R, Qu D, Weygant N, Chandrakesan P, Ali N, Lightfoot SA, et al. Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair after radiation injury. Stem Cells. 2014;32(3):822–7.  https://doi.org/10.1002/stem.1566.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Qu D, May R, Sureban SM, Weygant N, Chandrakesan P, Ali N, et al. Inhibition of Notch signaling reduces the number of surviving Dclk1+ reserve crypt epithelial stem cells following radiation injury. Am J Physiol Gastrointest Liver Physiol. 2014;306(5):G404–11.  https://doi.org/10.1152/ajpgi.00088.2013.PubMedCrossRefGoogle Scholar
  60. 60.
    Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest. 2014;124(3):1283–95.  https://doi.org/10.1172/JCI73434.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chandrakesan P, May R, Qu D, Weygant N, Taylor VE, Li JD, et al. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal. Oncotarget. 2015;6(31):30876–86.  10.18632/oncotarget.5129.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chandrakesan P, May R, Weygant N, Qu D, Berry WL, Sureban SM, et al. Intestinal tuft cells regulate the ATM mediated DNA damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury. Sci Rep. 2016;6:37667.  https://doi.org/10.1038/srep37667.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gross S, Balderes D, Liu J, Asfaha S, Gu G, Wang TC, et al. Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential. Am J Physiol Gastrointest Liver Physiol. 2015;309(12):G975–87.  https://doi.org/10.1152/ajpgi.00244.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, et al. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 2011;140(4):1230–40 e1-7.  https://doi.org/10.1053/j.gastro.2011.01.005.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Stamataki D, Holder M, Hodgetts C, Jeffery R, Nye E, Spencer-Dene B, et al. Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS One. 2011;6(9):e24484.  https://doi.org/10.1371/journal.pone.0024484.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nakata T, Shimizu H, Nagata S, Ito G, Fujii S, Suzuki K, et al. Data showing proliferation and differentiation of intestinal epithelial cells under targeted depletion of Notch ligands in mouse intestine. Data Brief. 2017;10:551–6.  https://doi.org/10.1016/j.dib.2016.12.045.PubMedCrossRefGoogle Scholar
  67. 67.
    Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY. Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology. 2007;132(7):2478–88.  https://doi.org/10.1053/j.gastro.2007.03.047.PubMedCrossRefGoogle Scholar
  68. 68.
    Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A. 2012;109(23):8965–70.  https://doi.org/10.1073/pnas.1201652109.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA, Yang VW, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development. 2002;129(11):2619–28.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Kuruvilla JG, Kim CK, Ghaleb AM, Bialkowska AB, Kuo CJ, Yang VW. Kruppel-like factor 4 modulates development of BMI1(+) intestinal stem cell-derived lineage following gamma-radiation-induced gut injury in mice. Stem Cell Rep. 2016;6(6):815–24.  https://doi.org/10.1016/j.stemcr.2016.04.014.CrossRefGoogle Scholar
  71. 71.
    Gilbert S, Zhang R, Denson L, Moriggl R, Steinbrecher K, Shroyer N, et al. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol Med. 2012;4(2):109–24.  https://doi.org/10.1002/emmm.201100192.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gilbert S, Nivarthi H, Mayhew CN, Lo YH, Noah TK, Vallance J, et al. Activated STAT5 confers resistance to intestinal injury by increasing intestinal stem cell proliferation and regeneration. Stem Cell Rep. 2015;4(2):209–25.  https://doi.org/10.1016/j.stemcr.2014.12.004.CrossRefGoogle Scholar
  73. 73.
    Booth C, Tudor G, Tudor J, Katz BP, MacVittie TJ. Acute gastrointestinal syndrome in high-dose irradiated mice. Health Phys. 2012;103(4):383–99.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001;293(5528):293–7.  https://doi.org/10.1126/science.1060191.PubMedCrossRefGoogle Scholar
  75. 75.
    Otsuka K, Suzuki K. Differences in radiation dose response between small and large intestinal crypts. Radiat Res. 2016;186(3):302–14.  https://doi.org/10.1667/RR14455.1.PubMedCrossRefGoogle Scholar
  76. 76.
    Hua G, Wang C, Pan Y, Zeng Z, Lee SG, Martin ML, et al. Distinct levels of radioresistance in Lgr5+ colonic epithelial stem cells versus Lgr5+ small intestinal stem cells. Cancer Res. 2017;77(8):2124–33.  https://doi.org/10.1158/0008-5472.CAN-15-2870.PubMedCrossRefGoogle Scholar
  77. 77.
    Ghaleb AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW. Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 2005;15(2):92–6.  https://doi.org/10.1038/sj.cr.7290271.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sancho R, Cremona CA, Behrens A. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep. 2015;16(5):571–81.  10.15252/embr.201540188.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cazzoli D, Muri RM, Schumacher R, von Arx S, Chaves S, Gutbrod K, et al. Theta burst stimulation reduces disability during the activities of daily living in spatial neglect. Brain. 2012;135(Pt 11):3426–39.  https://doi.org/10.1093/brain/aws182.PubMedCrossRefGoogle Scholar
  80. 80.
    Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 2011;30(6):1104–9.  https://doi.org/10.1038/emboj.2011.26.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. The stem cells of small intestinal crypts: where are they? Cell Prolif. 2009;42(6):731–50.  https://doi.org/10.1111/j.1365-2184.2009.00642.x.PubMedCrossRefGoogle Scholar
  82. 82.
    Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495(7439):65–9.  https://doi.org/10.1038/nature11965.PubMedCrossRefGoogle Scholar
  83. 83.
    •• Yan KS, Gevaert O, GXY Z, Anchang B, Probert CS, Larkin KA, et al. Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell. 2017;21(1):78–90 e6.  https://doi.org/10.1016/j.stem.2017.06.014. Utilized single-cell RNA sequencing to determine that BMI1 + cells are enteroendocrine lineages with the ability to function as ISCs under injury. PubMedCrossRefGoogle Scholar
  84. 84.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010;14(9):2190–9.  https://doi.org/10.1111/j.1582-4934.2010.01151.x.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Semont A, Demarquay C, Bessout R, Durand C, Benderitter M, Mathieu N. Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration. PLoS One. 2013;8(7):e70170.  https://doi.org/10.1371/journal.pone.0070170.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, et al. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 2013;4:e685.  https://doi.org/10.1038/cddis.2013.178.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072.  https://doi.org/10.1371/journal.pone.0024072.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chen H, Min XH, Wang QY, Leung FW, Shi L, Zhou Y, et al. Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep. 2015;5:8718.  https://doi.org/10.1038/srep08718.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, et al. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest. 2012;122(5):1786–90.  https://doi.org/10.1172/JCI59920.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Francois A, Milliat F, Guipaud O, Benderitter M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed Res Int. 2013;2013:123241.  https://doi.org/10.1155/2013/123241.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Bhanja P, Saha S, Kabarriti R, Liu L, Roy-Chowdhury N, Roy-Chowdhury J, et al. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One. 2009;4(11):e8014.  https://doi.org/10.1371/journal.pone.0008014.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhou WJ, Geng ZH, Spence JR, Geng JG. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature. 2013;501(7465):107–11.  https://doi.org/10.1038/nature12416.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Van Landeghem L, Santoro MA, Mah AT, Krebs AE, Dehmer JJ, McNaughton KK, et al. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. FASEB J. 2015;29(7):2828–42.  https://doi.org/10.1096/fj.14-264010.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Qiu W, Leibowitz B, Zhang L, Yu J. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene. 2010;29(11):1622–32.  https://doi.org/10.1038/onc.2009.451.PubMedCrossRefGoogle Scholar
  96. 96.
    Stenson WF. Prostaglandins and epithelial response to injury. Curr Opin Gastroenterol. 2007;23(2):107–10.  https://doi.org/10.1097/MOG.0b013e3280143cb6.PubMedCrossRefGoogle Scholar
  97. 97.
    Sureban SM, May R, Qu D, Chandrakesan P, Weygant N, Ali N, et al. Dietary pectin increases intestinal crypt stem cell survival following radiation injury. PLoS One. 2015;10(8):e0135561.  https://doi.org/10.1371/journal.pone.0135561.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lewanski CR, Gullick WJ. Radiotherapy and cellular signalling. Lancet Oncol. 2001;2(6):366–70.  https://doi.org/10.1016/S1470-2045(00)00391-0.PubMedCrossRefGoogle Scholar
  99. 99.
    Withers HR, Mason K, Reid BO, Dubravsky N, Barkley HT Jr, Brown BW, et al. Response of mouse intestine to neutrons and gamma rays in relation to dose fractionation and division cycle. Cancer. 1974;34(1):39–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3(2):117–29.  https://doi.org/10.1038/nrc992.PubMedCrossRefGoogle Scholar
  101. 101.
    Leibowitz BJ, Qiu W, Liu H, Cheng T, Zhang L, Yu J. Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21. Mol Cancer Res. 2011;9(5):616–25.  https://doi.org/10.1158/1541-7786.MCR-11-0052.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ghaleb AM, Katz JP, Kaestner KH, Du JX, Yang VW. Kruppel-like factor 4 exhibits antiapoptotic activity following gamma-radiation-induced DNA damage. Oncogene. 2007;26(16):2365–73.  https://doi.org/10.1038/sj.onc.1210022.PubMedCrossRefGoogle Scholar
  103. 103.
    Talmasov D, Xinjun Z, Yu B, Nandan MO, Bialkowska AB, Elkarim E, et al. Kruppel-like factor 4 is a radioprotective factor for the intestine following gamma-radiation-induced gut injury in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308(2):G121–38.  https://doi.org/10.1152/ajpgi.00080.2014.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang X, Wei L, Cramer JM, Leibowitz BJ, Judge C, Epperly M, et al. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep. 2015;5:8566.  https://doi.org/10.1038/srep08566.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Richmond CA, Shah MS, Deary LT, Trotier DC, Thomas H, Ambruzs DM, et al. Dormant intestinal stem cells are regulated by PTEN and nutritional status. Cell Rep. 2015;13(11):2403–11.  https://doi.org/10.1016/j.celrep.2015.11.035.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chang-Kyung Kim
    • 1
  • Vincent W. Yang
    • 1
    • 2
  • Agnieszka B. Bialkowska
    • 1
  1. 1.Department of MedicineStony Brook University School of MedicineStony BrookUSA
  2. 2.Department of Physiology and BiophysicsStony Brook University School of MedicineStony BrookUSA

Personalised recommendations