Skip to main content

Advertisement

Log in

Authentic Engineering Problems in Service Mathematics Assignments: Principles, Processes and Products from Twenty Years of Task Design

  • Published:
International Journal of Research in Undergraduate Mathematics Education Aims and scope Submit manuscript

Abstract

A central problem in undergraduate mathematics education for future engineers consists in the perceived and actual relevance of the mathematical content. One strategy to strengthen both is to let students experience how that content appears in posing and solving authentic problems from the field of engineering which the students have signed up to study. This paper proposes a way to develop such a strategy, both in terms of theoretical precision (e.g. to clarify what “authentic” could mean in this context), and in terms of the institutional and epistemological conditions and constraints for realizing the strategy. The paper is based on cases and formats developed over twenty years at the Technical University of Denmark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Baillie, C., & Fitzgerald, G. (2000). Motivation and attrition in engineering students. European Journal of Engineering Education, 25(2), 145–155.

    Article  Google Scholar 

  • Bergqvist, E. (2007). Types of reasoning required in university exams in mathematics in Sweden. Journal of Mathematical Behavior, 26(4), 348–370.

    Article  Google Scholar 

  • Bjørk, R., Bahl, C. R. H., Smith, A., & Pryds, N. (2014). Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders. Journal of Magnetism and Magnetic Materials, 322(1), 133–141.

    Article  Google Scholar 

  • Castela, C., & Romo-Vásquez, A. (2011). Des mathématiques à l’automatique: étude des effets de transposition sur la transformée de Laplace dans la formation des ingénieurs. Recherches en didactique des mathématiques, 31(1), 79–130.

    Google Scholar 

  • Chevallard, Y. (1991). La Transposition didactique: du savoir savant au savoir enseigné (2nd ed.). Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: An attempt at a principled approach. Hiroshima Journal of Mathematics Education, 12, 71–114.

    Google Scholar 

  • Flegg, J., Mallet, D., & Lupton, M. (2012). Students' perceptions of the relevance of mathematics in engineering. International Journal of Mathematical Education in Science and Technology, 43(6), 717–732.

    Article  Google Scholar 

  • Halbach, K. (1980). Design of permanent multipole magnets with oriented rare earth cobalt material. Nuclear Instruments and Methods, 169, 1–10.

    Article  Google Scholar 

  • Hardy, N. (2009). Students’ perceptions of institutional practices: The case of limits of functions in college level Calculus courses. Educational Studies in Mathematics, 72(3), 341–358.

    Article  Google Scholar 

  • Harris, D., Black, L., Hernandez-Martinez, P., Pepin, B., & Williams, J. (2015). Mathematics and its value for engineering students: What are the implications for teaching? International Journal of Mathematical Education in Science and Technology, 46(3), 321–336.

    Article  Google Scholar 

  • Härterich, J., Kiss, C., Rooch, A., Mönnigmann, M., Darup, M., & Span, R. (2012). MathePraxis - connecting first-year mathematics with engineering applications. European Journal of Engineering Education, 37(3), 255–266.

    Article  Google Scholar 

  • Kumar, S., & Jalkio, J. (1999). Teaching mathematics from an application perspective. Journal of Engineering Education, 1999, 275–279.

    Article  Google Scholar 

  • Mustoe, L. (2002). Mathematics in engineering education. European Journal of Engineering Education, 27(3), 237–240.

    Article  Google Scholar 

  • Nielsen, T. R. (2005). Simple tool to evaluate energy demand and indoor environment in the early stages of building design. Solar Energy, 78(1), 73–78.

    Article  Google Scholar 

  • Patrikalaksis, N., & Maekawa, T. (2010). Shape interrogation for computer aided design and manufacturing. Berlin: Springer.

    Book  Google Scholar 

  • Ruthven, K. (2018). Taking design to task: A critical appreciation. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education (pp. 311–320). London: Springer.

    Google Scholar 

  • Schmidt, K., & Winsløw, C. (2018). Task design for engineering mathematics: Process, principles and products. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of the second conference of the international network for didactic research in university mathematics (pp. 165–174). Kristiansand: University of Agder.

    Google Scholar 

  • Watson, A., & Ohtani, M. (2015). Task design in mathematics education: An ICMI study. Cham: Springer.

    Book  Google Scholar 

  • Wolf, P. and Biehler, R. (2016). Anwendungsorientierte Aufgaben für die Erstsemester-Mathematik-Veranstaltungen im Maschinenbaustudium (V.2). KHDM report 16–04. Retrieved from http://nbn-resolving.de/urn:nbn:de:hebis:34-2016010549550. Accessed 2 Feb 2021.

  • Wolf, P. (2017). Anwendungsorientierte Aufgaben für Mathematikveranstaltungen der Ingenieurstudiengänge: Konzeptgeleitete Entwicklung und Erprobung am Beispiel des Maschinenbaustudiengangs im ersten Studienjahr. Wiesbaden: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

We thank all the colleagues at DTU who have generously offered time and materials for our study, and in particular the following, who participated in interviews: Martin P. Bendsøe, Steen Markvorsen, Luise Theil Kuhn, Rasmus Bjørk, Ulrik Engelund Pedersen, Peter Gross, Toke Rammer Nielsen, Frank Pedersen and Hans Henrik Knudsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Winsløw.

Ethics declarations

Conflict of Interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, K., Winsløw, C. Authentic Engineering Problems in Service Mathematics Assignments: Principles, Processes and Products from Twenty Years of Task Design. Int. J. Res. Undergrad. Math. Ed. 7, 261–283 (2021). https://doi.org/10.1007/s40753-021-00133-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40753-021-00133-0

Keywords

Navigation