Adams–Bashforth (PECE) algorithm
We recall here the improved version of Adams–Bashforth–Moulton algorithm [31, 34] for the fractional-order systems. Consider the fractional-order initial value problem:
$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle D_t^{\alpha }{x}= f(x(t)) \quad 0\le t \le T,\\ \\ \displaystyle x^{(k)}(0) = x_0^{(k)}, \quad k= 0,1,\ldots ,m-1. \end{array}\right. \end{aligned}$$
(5)
It is equivalent to the Volterra integral equation:
$$\begin{aligned} \displaystyle {x(t)}= \sum _{k=0}^{[\alpha ]-1} x_0^{(k)}\frac{t^k}{k!}+\frac{1}{\varGamma (\alpha )}\int _{0}^{t}(t-s)^{\alpha -1}f(s,x(s)) \mathrm{d}s. \end{aligned}$$
(6)
Diethelm et al. have given a predictor–corrector scheme (see [34]), based on the Adams–Bashforth–Moulton algorithm to integrate Eq. (6). By applying this scheme to the fractional-order system (5), and setting
$$\begin{aligned} \displaystyle h = \frac{T}{N}, \quad t_n = nh, \quad n=0,1,\ldots ,N. \end{aligned}$$
Equation (6) can be discretized as follows:
$$\begin{aligned} \displaystyle {x_h(t_{n+1})}= & {} \sum _{k=0}^{[\alpha ]-1} x_0^{(k)}\frac{t^k}{k!} + \frac{h^\alpha }{\varGamma (\alpha + 2)}f(t_{n+1},x_h^p(t_{n+1})) \nonumber \\&+ \frac{h^\alpha }{\varGamma (\alpha + 2)} \sum _{j=0}^{n} a_{j, n+1}f(t_{j},x_h(t_{j})), \end{aligned}$$
(7)
where
Table 1 Equilibrium points and corresponding eigenvalues
$$\begin{aligned} a_{j, n + 1} = \left\{ \begin{array}{ll} \displaystyle n^{\alpha +1} - (n-\alpha )(n+1)^\alpha , \, j = 0,\\ \\ \displaystyle (n - j + 2)^{\alpha +1} + (n-j)^{\alpha +1} - 2(n- j + 1)^{\alpha +1}, \quad 1\le j \le n\\ \\ \displaystyle 1, \quad j=n+1, \end{array}\right. \end{aligned}$$
(8)
and the predictor is given by
$$\begin{aligned} \displaystyle x_h^p(t_{n+1}) = \sum _{k=0}^{[\alpha ]-1} x_0^{(k)}\frac{t^k}{k!}+\frac{1}{\varGamma (\alpha )} \sum _{j=0}^{n} b_{j, n+1}f(t_{j},x_h(t_{j})), \end{aligned}$$
(9)
where \(\displaystyle b_{j,n+1} = \frac{h^\alpha }{\alpha }((n+1) - j)^\alpha - (n-j)^\alpha .\)
The error estimate of the above scheme is
$$\begin{aligned} \displaystyle {\max }_{j=0,1,\ldots ,N}\left\{ |x(t_j)-x_h(t_j)|\right\} = O(h^p), \end{aligned}$$
in which \(p = \mathrm{min}(2, 1+\alpha )\).
The fractional frequency-domain approximation
The standard definition of fractional differintegral does not allow the direct implementation of the fractional operators in time-domain simulations. To study such systems, it is necessary to develop approximations to the fractional operators using the standard integer order operators. According to circuit theory, the approximation formulation of \(\alpha \), from 0.1 to 0.9, in reference [30], bode plot approximation chart, can be realized by the complex-frequency domain of the chain ship equivalent circuit. When \(\alpha = 0.98\), it can be worked out that the approximation formula of \(\displaystyle \frac{1}{s^{0.98}}\) is
$$\begin{aligned} \displaystyle \frac{1}{s^{0.98}} = \frac{1.2974(s+1125)}{(s+1423)(s+0.01125)}. \end{aligned}$$
(10)
In formula (10), \(s= j\omega \), its complex frequency and the chain ship circuit unit is described in Fig. 2a. The transfer function between A and B can be obtained as follows:
$$\begin{aligned} \displaystyle H_{0.98}(s)= & {} \frac{R_1}{sR_1C_1+1}+\frac{R_2}{sR_2C_2+1}\nonumber \\= & {} \frac{1}{C_0}\frac{\left( \frac{C_0}{C_1}+\frac{C_0}{C_2} \right) \left[ s+ \frac{\frac{1}{R_1}+\frac{1}{R_2}}{C_1+C_2}\right] }{\left( s+\frac{1}{R_1C_1}\right) \left( s+\frac{1}{R_2C_2}\right) }. \end{aligned}$$
(11)
Taking \(C_0 = 1\nu \text{ F }\). Since \(\displaystyle H(s)C_0 =\frac{1}{s^{0.98}}\), we can reach
$$\begin{aligned} \displaystyle R_1= & {} 91.1873\,\text{ M }\varOmega , \quad R_2= 190.933\,\omega ,\nonumber \\ C_1= & {} 975.32\,\mathrm{n}\text{ F },\quad \text{ and } \quad C_2= 3.6806\,\upmu \text{ F }. \end{aligned}$$
(12)
Similarly, for \(\alpha = 0.9\), we can reach that the approximation formula of \(\displaystyle \frac{1}{s^{0.9}}\) is
$$\begin{aligned} \displaystyle \frac{1}{s^{0.9}} = \frac{2.2675(s+1.292)(s+215.4)}{(s+0.01292)(s+2.154)(s+359.4)}. \end{aligned}$$
(13)
The chain ship circuit unit for this case is shown in Fig. 2b. The transfer function between A and B is
$$\begin{aligned} \displaystyle H_{0.9}(s) = \frac{\frac{1}{C_1}}{s+\frac{1}{R_1C_1}}+\frac{\frac{1}{C_2}}{s+\frac{1}{R_2C_2}}+ \frac{\frac{1}{C_3}}{s+\frac{1}{R_3C_3}}, \end{aligned}$$
(14)
we can reach
$$\begin{aligned} \displaystyle R_1= & {} 62.84\, \text{ M }\varOmega , \,\,R_2= 250\,\text{ k }\varOmega ,\,\, R_3= 2.5\,\text{ k }\varOmega ,\nonumber \\ C_1= & {} 1.23\,\upmu \text{ F },\,\, C_2= 1.83\,\upmu \text{ F },\,\, \text{ and } \,\, C_3= 1.1\,\upmu \text{ F }. \end{aligned}$$
(15)