Skip to main content
Log in

Prophylactic Peritoneal Dialysis in Pediatric Cardiac Surgery

  • Cardiology/CT Surgery (K Gist, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purposeof review

This review examines the role of prophylactic peritoneal dialysis in pediatric patients after cardiac surgery. We identify benefits and risks of the intervention while highlighting gaps in current knowledge.

Recent findings

The usage of peritoneal dialysis to manage and acute kidney injury (AKI) and fluid overload (FO) after pediatric cardiac surgery may demonstrate advantages over conventional diuresis and more invasive forms of renal replacement therapies (RRT) in some patients. Outcomes vary by population in limited single and multicenter studies but suggest decreased mechanical ventilation time, earlier time to net negative fluid balance, and shorter ICU stays when compared to conventional therapies.

Summary

Prophylactic peritoneal dialysis use in the pediatric cardiac population varies widely across pediatric cardiac centers but is increasingly being demonstrated as a safe, effective treatment of AKI and FO, both of which are common and associated with deleterious outcomes in this population. Clinical decision support tools have been developed to assist in identifying patients most likely to benefit from RRT outside of the cardiac population, but further work is needed to determine if they can be applied to postoperative cardiac patients. Complications are relatively infrequent but may indicate benefits for center-specific peritoneal dialysis management protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alten JA, Cooper DS, Blinder JJ, Selewski DT, Tabbutt S, Sasaki J, et al. Epidemiology of Acute Kidney Injury After Neonatal Cardiac Surgery: A Report From the Multicenter Neonatal and Pediatric Heart and Renal Outcomes Network. Crit Care Med. 2021;49(10):e941–51.

    Article  CAS  PubMed  Google Scholar 

  2. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1(3):184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of Acute Kidney Injury in Critically Ill Children and Young Adults. N Engl J Med. 2017;376(1):11–20.

    Article  PubMed  Google Scholar 

  4. Blinder JJ, Goldstein SL, Lee VV, Baycroft A, Fraser CD, Nelson D, et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368–74.

    Article  PubMed  Google Scholar 

  5. Mah KE, Hao S, Sutherland SM, Kwiatkowski DM, Axelrod DM, Almond CS, et al. Fluid overload independent of acute kidney injury predicts poor outcomes in neonates following congenital heart surgery. Pediatr Nephrol. 2018;33(3):511–20.

    Article  PubMed  Google Scholar 

  6. Li S, Krawczeski CD, Zappitelli M, Devarajan P, Thiessen-Philbrook H, Coca SG, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bailly DK, Alten JA, Gist KM, Mah KE, Kwiatkowski DM, Valentine KM, et al. Fluid accumulation after neonatal congenital cardiac operation: clinical implications and outcomes. Ann Thorac Surg. 2022;114(6):2288–94.

    Article  PubMed  Google Scholar 

  8. Wilder NS, Yu S, Donohue JE, Goldberg CS, Blatt NB. Fluid Overload is associated with late poor outcomes in neonates following cardiac surgery. Pediatr Crit Care Med. 2016;17(5):420–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bellomo R, Auriemma S, Fabbri A, D’Onofrio A, Katz N, McCullough PA, et al. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int J Artif Organs. 2008;31(2):166–78.

    Article  CAS  PubMed  Google Scholar 

  10. Gist KM, Selewski DT, Brinton J, Menon S, Goldstein SL, Basu RK. Assessment of the independent and synergistic effects of fluid overload and acute kidney injury on outcomes of critically ill children. Pediatr Crit Care Med. 2020;21(2):170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nourse P, Cullis B, Finkelstein F, Numanoglu A, Warady B, Antwi S, et al. ISPD guidelines for peritoneal dialysis in acute kidney injury: 2020 Update (paediatrics). Perit Dial Int. 2021;41(2):139–57.

    Article  PubMed  Google Scholar 

  12. McCulloch M, Luyckx VA, Cullis B, Davies SJ, Finkelstein FO, Yap HK, et al. Challenges of access to kidney care for children in low-resource settings. Nat Rev Nephrol. 2021;17(1):33–45.

    Article  PubMed  Google Scholar 

  13. Santos CR, Branco PQ, Gaspar A, Bruges M, Anjos R, Goncalves MS, et al. Use of peritoneal dialysis after surgery for congenital heart disease in children. Perit Dial Int. 2012;32(3):273–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sahu MK, Bipin C, Arora Y, Singh SP, Devagouru V, Rajshekar P, et al. Peritoneal dialysis in pediatric postoperative cardiac surgical patients. Indian J Crit Care Med. 2019;23(8):371–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frering B, Philip I, Dehoux M, Rolland C, Langlois JM, Desmonts JM. Circulating cytokines in patients undergoing normothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994;108(4):636–41.

    Article  CAS  PubMed  Google Scholar 

  16. Bokesch PM, Kapural MB, Mossad EB, Cavaglia M, Appachi E, Drummond-Webb JJ, et al. Do peritoneal catheters remove pro-inflammatory cytokines after cardiopulmonary bypass in neonates? Ann Thorac Surg. 2000;70(2):639–43.

    Article  CAS  PubMed  Google Scholar 

  17. Dittrich S, Aktuerk D, Seitz S, Mehwald P, Schulte-Monting J, Schlensak C, et al. Effects of ultrafiltration and peritoneal dialysis on proinflammatory cytokines during cardiopulmonary bypass surgery in newborns and infants. Eur J Cardiothorac Surg. 2004;25(6):935–40.

    Article  CAS  PubMed  Google Scholar 

  18. Kwiatkowski DM, Goldstein SL, Cooper DS, Nelson DP, Morales DL, Krawczeski CD. Peritoneal Dialysis vs furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 2017;171(4):357–64.

    Article  PubMed  Google Scholar 

  19. Kwiatkowski DM, Menon S, Krawczeski CD, Goldstein SL, Morales DL, Phillips A, et al. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149(1):230–6.

    Article  PubMed  Google Scholar 

  20. Pedersen KR, Hjortdal VE, Christensen S, Pedersen J, Hjortholm K, Larsen SH, et al. Clinical outcome in children with acute renal failure treated with peritoneal dialysis after surgery for congenital heart disease. Kidney Int Suppl. 2008;108:S81–6.

    Article  Google Scholar 

  21. Brown EA, Blake PG, Boudville N, Davies S, de Arteaga J, Dong J, et al. International Society for Peritoneal Dialysis practice recommendations: Prescribing high-quality goal-directed peritoneal dialysis. Perit Dial Int. 2020;40(3):244–53.

    Article  PubMed  Google Scholar 

  22. Strippoli GF, Tong A, Johnson D, Schena FP, Craig JC. Catheter-related interventions to prevent peritonitis in peritoneal dialysis: a systematic review of randomized, controlled trials. J Am Soc Nephrol. 2004;15(10):2735–46.

    Article  PubMed  Google Scholar 

  23. Eklund B, Honkanen E, Kyllonen L, Salmela K, Kala AR. Peritoneal dialysis access: prospective randomized comparison of single-cuff and double-cuff straight Tenckhoff catheters. Nephrol Dial Transplant. 1997;12(12):2664–6.

    Article  CAS  PubMed  Google Scholar 

  24. Warady BA, Bakkaloglu S, Newland J, Cantwell M, Verrina E, Neu A, et al. Consensus guidelines for the prevention and treatment of catheter-related infections and peritonitis in pediatric patients receiving peritoneal dialysis: 2012 update. Perit Dial Int. 2012;32 Suppl 2(Suppl 2):S32–86.

  25. Misra M, Phadke GM. Historical Milestones in Peritoneal Dialysis. Contrib Nephrol. 2019;197:1–8.

    Article  PubMed  Google Scholar 

  26. Flores S, Loomba RS, Elhoff JJ, Bronicki RA, Mery CM, Alsaied T, et al. Peritoneal Dialysis vs diuretics in children after congenital heart surgery. Ann Thorac Surg. 2019;108(3):806–12.

    Article  PubMed  Google Scholar 

  27. Davies SJ, Zhao J, Morgenstern H, Zee J, Bieber B, Fuller DS, et al. Low serum potassium levels and clinical outcomes in peritoneal dialysis-international results from PDOPPS. Kidney Int Rep. 2021;6(2):313–24.

    Article  PubMed  Google Scholar 

  28. Hamad A, Hussain ME, Elsanousi S, Ahmed H, Navalta L, Lonappan V, et al. Prevalence and management of hypokalemia in peritoneal dialysis patients in Qatar. Int J Nephrol. 2019;2019:1875358.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Szeto CC, Chow KM, Kwan BC, Leung CB, Chung KY, Law MC, et al. Hypokalemia in Chinese peritoneal dialysis patients: prevalence and prognostic implication. Am J Kidney Dis. 2005;46(1):128–35.

    Article  PubMed  Google Scholar 

  30. Werner HA, Wensley DF, Lirenman DS, LeBlanc JG. Peritoneal dialysis in children after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997;113(1):64–8; discussion 8–70.

  31. Morris KP, Butt WW, Karl TR. Effect of peritoneal dialysis on intra-abdominal pressure and cardio-respiratory function in infants following cardiac surgery. Cardiol Young. 2004;14(3):293–8.

    Article  CAS  PubMed  Google Scholar 

  32. Yang SF, Liu CJ, Yang WC, Chang CF, Yang CY, Li SY, et al. The risk factors and the impact of hernia development on technique survival in peritoneal dialysis patients: a population-based cohort study. Perit Dial Int. 2015;35(3):351–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Auron A, Warady BA, Simon S, Blowey DL, Srivastava T, Musharaf G, et al. Use of the multipurpose drainage catheter for the provision of acute peritoneal dialysis in infants and children. Am J Kidney Dis. 2007;49(5):650–5.

    Article  PubMed  Google Scholar 

  34. Bonilla-Felix M. Peritoneal dialysis in the pediatric intensive care unit setting: techniques, quantitations and outcomes. Blood Purif. 2013;35(1–3):77–80.

    Article  PubMed  Google Scholar 

  35. Goes CR, Berbel MN, Balbi AL, Ponce D. Metabolic implications of peritoneal dialysis in patients with acute kidney injury. Perit Dial Int. 2013;33(6):635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Golej J, Kitzmueller E, Hermon M, Boigner H, Burda G, Trittenwein G. Low-volume peritoneal dialysis in 116 neonatal and paediatric critical care patients. Eur J Pediatr. 2002;161(7):385–9.

    Article  PubMed  Google Scholar 

  37. Sasser WC, Dabal RJ, Askenazi DJ, Borasino S, Moellinger AB, Kirklin JK, et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106–15.

    Article  PubMed  Google Scholar 

  38. Gist KM, Henry BM, Borasino S, Rahman A, Webb T, Hock KM, et al. Prophylactic Peritoneal dialysis after the arterial switch operation: a retrospective cohort study. Ann Thorac Surg. 2021;111(2):655–61.

    Article  PubMed  Google Scholar 

  39. Namachivayam SP, Law S, Millar J, d’Udekem Y. Early Peritoneal dialysis and postoperative outcomes in infants after pediatric cardiac surgery: a systematic review and meta-analysis. Pediatr Crit Care Med. 2022;23(10):793–800.

    Article  PubMed  Google Scholar 

  40. Goldstein SL, Akcan-Arikan A, Alobaidi R, Askenazi DJ, Bagshaw SM, Barhight M, et al. Consensus-based recommendations on priority activities to address acute kidney injury in children: a modified delphi consensus statement. JAMA Network Open. 2022;5(9):e2229442-e.

    Article  Google Scholar 

  41. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85(3):659–67.

    Article  PubMed  Google Scholar 

  42. Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9(4):654–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goldstein SL, Krallman KA, Kirby C, Roy JP, Collins M, Fox K, et al. Integration of the renal angina index and urine neutrophil gelatinase-associated lipocalin improves severe acute kidney injury prediction in critically ill children and young adults. Kidney Int Rep. 2022;7(8):1842–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gist KM, SooHoo M, Mack E, Ricci Z, Kwiatkowski DM, Cooper DS, et al. Modifying the renal angina index for predicting AKI and related adverse outcomes in pediatric heart surgery. World J Pediatr Congenit Heart Surg. 2022;13(2):196–202.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Shina Menon for reviewing their manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja M. Gist.

Ethics declarations

Conflict of Interest

Katie Brandewie, Katherine Melink and Katja M Gist DO each declare no potential conflicts of interest.

Human and Animal Rights and Informed Concent

The article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiology/CT Surgery

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandewie, K., Melink, K. & Gist, K. Prophylactic Peritoneal Dialysis in Pediatric Cardiac Surgery. Curr Treat Options Peds 9, 136–145 (2023). https://doi.org/10.1007/s40746-023-00268-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-023-00268-z

Keywords

Navigation