Skip to main content
Log in

Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications

  • Published:
Annals of Data Science Aims and scope Submit manuscript

Abstract

Let a progressively type-II (PT-II) censored sample of size m is available. Under this set-up, we consider the problem of estimating unknown model parameters and two reliability characteristics of the log-logistic distribution. Maximum likelihood estimates (MLEs) are obtained. We use expectation–maximization (EM) algorithm. The observed Fisher information matrix is computed. We propose Bayes estimates with respect to various loss functions. In this purpose, we adopt Lindley’s approximation and importance sampling methods. Asymptotic and bootstrap confidence intervals are derived. Asymptotic intervals are obtained using two approaches: normal approximation to MLEs and log-transformed MLEs. The bootstrap intervals are computed using boot-t and boot-p algorithms. Further, highest posterior density (HPD) credible intervals are constructed. Two sets of practical data are analyzed for the illustration purpose. Finally, detailed simulation study is carried out to observe the performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas K, Tang Y (2016) Objective Bayesian analysis for log-logistic distribution. Commun Stat Simul Comput 45(8):2782–2791

    Article  Google Scholar 

  2. Aggarwala R, Balakrishnan N (1998) Some properties of progressive censored order statistics from arbitrary and uniform distributions with applications to inference and simulation. J Stat Plan Inference 70(1):35–49

    Article  Google Scholar 

  3. Ahmad M, Sinclair C, Werritty A (1988) Log-logistic flood frequency analysis. J Hydrol 98(3–4):205–224

    Article  Google Scholar 

  4. Ashkar F, Mahdi S (2003) Comparison of two fitting methods for the log-logistic distribution. Water Resour Res 39(8):12–17

    Article  Google Scholar 

  5. Balakrishnan N (2007) Progressive censoring methodology: an appraisal. Test 16(2):211

    Article  Google Scholar 

  6. Balakrishnan N, Aggarwala R (2000) Progressive censoring: theory, methods, and applications. Springer, Berlin

    Book  Google Scholar 

  7. Balakrishnan N, Cramer E (2014) The art of progressive censoring. Springer, Berlin

    Book  Google Scholar 

  8. Balakrishnan N, Sandhu R (1995) A simple simulational algorithm for generating progressive type-II censored samples. Am Stat 49(2):229–230

    Google Scholar 

  9. Barot D, Patel M (2017) Posterior analysis of the compound Rayleigh distribution under balanced loss functions for censored data. Commun Stat Theory Methods 46(3):1317–1336

    Article  Google Scholar 

  10. Basak I, Balakrishnan N (2017) Prediction of censored exponential lifetimes in a simple step-stress model under progressive Type II censoring. Comput Stat 32(4):1665–1687

    Article  Google Scholar 

  11. Best DJ, Rayner JC, Thas O (2010) Easily applied tests of fit for the Rayleigh distribution. Sankhya B 72(2):254–263

    Article  Google Scholar 

  12. Bjerkedal T (1960) Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli. Am J Hyg 72(1):130–148

    Google Scholar 

  13. Chen MH, Shao QM (1999) Monte carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92

    Google Scholar 

  14. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39(1):1–38

    Google Scholar 

  15. Dey S, Dey T, Luckett DJ (2016) Statistical inference for the generalized inverted exponential distribution based on upper record values. Math Comput Simul 120:64–78

    Article  Google Scholar 

  16. Dey S, Singh S, Tripathi YM, Asgharzadeh A (2016) Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat Methodol 32:185–202

    Article  Google Scholar 

  17. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1(1):54–75

    Google Scholar 

  18. Fisk P (1961) Estimation of location and scale parameters in a truncated grouped sech square distribution. J Am Stat Assoc 56(295):692–702

    Article  Google Scholar 

  19. Greene WH (2000) Econometric analysis, 4th edn. Prentice-Hall, New York

    Google Scholar 

  20. Hall P (1988) Theoretical comparison of bootstrap confidence intervals. Ann Stat 16(3):927–953

    Google Scholar 

  21. He X, Chen W, Qian W (2018) Maximum likelihood estimators of the parameters of the log-logistic distribution. Stat Pap 1–18

  22. Kharazmi O, Mahdavi A, Fathizadeh M (2015) Generalized weighted exponential distribution. Commun Stat Simul Comput 44(6):1557–1569

    Article  Google Scholar 

  23. Khorram E, Meshkani Farahani ZS (2014) Statistical inference of weighted exponential lifetimes under progressive Type II censoring scheme. Qual Technol Quant Manag 11(4):433–451

    Article  Google Scholar 

  24. Kumar K (2018) Classical and Bayesian estimation in log-logistic distribution under random censoring. Int J Syst Assur Eng Manag 9(2):440–451

    Article  Google Scholar 

  25. Kus C, Kaya MF (2006) Estimation of parameters of the loglogistic distribution based on progressive censoring using the EM algorithm. Hacet J Math Stat 35(2):203–211

    Google Scholar 

  26. Langlands AO, Pocock SJ, Kerr GR, Gore SM (1979) Long-term survival of patients with breast cancer: a study of the curability of the disease. Br Med J 2(6200):1247–1251

    Article  Google Scholar 

  27. Lindley DV (1980) Approximate Bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa 31(1):223–245

    Article  Google Scholar 

  28. Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B (Methodol) 44(2):226–233

    Google Scholar 

  29. Mahmoudi E (2011) The beta generalized pareto distribution with application to lifetime data. Math Comput Simul 81(11):2414–2430

    Article  Google Scholar 

  30. Maiti K, Kayal S (2019a) Estimation for the generalized Fréchet distribution under progressive censoring scheme. Int J Syst Assur Eng Manag 10(5):1276–1301

    Article  Google Scholar 

  31. Maiti K, Kayal S (2019b) Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2019.1630431

    Article  Google Scholar 

  32. Mäkeläinen T, Schmidt K, Styan GP (1981) On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples. Ann Stat 9(4):758–767

    Article  Google Scholar 

  33. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiey, New York

    Google Scholar 

  34. Mielke JR, PAUL W, Johnson ES (1973) Three-parameter kappa distribution maximum likelihood estimates and likelihood ratio tests. Mon Weather Rev 101(9):701–707

    Article  Google Scholar 

  35. Mudholkar GS, Srivastava DK, Kollia GD (1996) A generalization of the weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91(436):1575–1583

    Article  Google Scholar 

  36. Ng H, Chan P, Balakrishnan N (2002) Estimation of parameters from progressively censored data using EM algorithm. Comput Stat Data Anal 39(4):371–386

    Article  Google Scholar 

  37. Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin Englewood Cliffs, New York

    Google Scholar 

  38. Shi Y (2014) Big data: history, current status, and challenges going forward. Bridge 44(4):6–11

    Google Scholar 

  39. Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, Berlin

    Book  Google Scholar 

  40. Shoukri M, Mian I, Tracy D (1988) Sampling properties of estimators of the log-logistic distribution with application to canadian precipitation data. Can J Stat 16(3):223–236

    Article  Google Scholar 

  41. Singh S, Tripathi YM, Wu S-J (2015) On estimating parameters of a progressively censored lognormal distribution. J Stat Comput Simul 85(6):1071–1089

    Article  Google Scholar 

  42. Singh S, Tripathi YM, Wu S-J (2018) Bayesian analysis for lognormal distribution under progressive type-II censoring. Hacet J Math Stat 48:1488–1504

    Google Scholar 

  43. Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393):82–86

    Article  Google Scholar 

  44. Valiollahi R, Raqab MZ, Asgharzadeh A, Alqallaf F (2018) Estimation and prediction for power Lindley distribution under progressively type II right censored samples. Math Comput Simul 149:32–47

    Article  Google Scholar 

  45. Zhou YY, Mi J, Guo S (2007) Estimation of parameters in logistic and log-logistic distribution with grouped data. Lifetime Data Anal 13(3):421–429

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Kousik Maiti thanks the Ministry of Human Resource Development (M.H.R.D.), Government of India for the financial assistantship received to carry out this research work. The authors sincerely wish to thank the Editor in Chief, the anonymous reviewer for the suggestions which have considerably improved the content and the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchandan Kayal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For the present problem, we have \((\eta _1,\eta _2)=(\alpha ,\beta )\). Denote \(\varpi (t_i; \alpha , \beta )=\frac{( \beta ^{\alpha } \ln \beta + t_i^{\alpha } \ln t_i)}{\beta ^{\alpha }+t_i^{\alpha }}\) and \(\varsigma (t_i; \alpha , \beta )=\frac{\alpha \beta ^{\alpha }}{\beta ^{\alpha }+t_i^{\alpha }}\). We obtain the following expressions, which are required to compute the desired Bayes estimates.

$$\begin{aligned} l_{03}= & {} \frac{2 m}{\alpha ^3}-\sum _{i=1}^m \left( U_i+2\right) \bigg ( 2\varpi ^3(t_i; \alpha , \beta )-\frac{3\varpi (t_i; \alpha , \beta )(\beta ^\alpha (\ln \beta )^2+t_i^\alpha (\ln t_i)^2)}{\beta ^\alpha +t_i^\alpha }\nonumber \\&+\frac{(\beta ^\alpha (\ln \beta )^3+t_i^\alpha (\ln t_i)^3)}{\beta ^\alpha +t_i^\alpha }\bigg ), \end{aligned}$$
(A.1)
$$\begin{aligned} l_{30}= & {} \frac{1}{\beta ^3}\left[ 2 \alpha \left( \sum _{i=1}^m U_i+m\right) -\sum _{i=1}^m \left( U_i+2\right) \varsigma (t_i; \alpha , \beta ) \bigg ((\alpha -2) (\alpha -1)+2\varsigma ^2(t_i; \alpha , \beta )\right. \nonumber \\&\left. -3(\alpha -1)\varsigma (t_i; \alpha , \beta ) \bigg )\right] , \end{aligned}$$
(A.2)
$$\begin{aligned} l_{12}= & {} -\frac{1}{\beta ^2}\left[ \left( \sum _{i=1}^m U_i+m\right) -\sum _{i=1}^m \frac{\left( U_i+2\right) \varsigma (t_i; \alpha , \beta )}{\alpha } \bigg (2 \alpha \varsigma (t_i; \alpha , \beta ) \varpi (t_i; \alpha , \beta )\right. \nonumber \\&\left. -2 \varsigma (t_i; \alpha , \beta ) (1+\alpha \ln \beta )- (\alpha -1) \alpha \varpi (t_i; \alpha , \beta ) +(\alpha -1) \alpha \ln \beta +2\alpha -1\bigg )\right] , \end{aligned}$$
(A.3)
$$\begin{aligned} l_{21}= & {} -\sum _{i=1}^m \frac{\left( U_i+2\right) \varsigma (t_i; \alpha , \beta ) }{\alpha \beta }\left[ 2\ln \beta +\alpha (\ln \beta )^2 - 2(1+\alpha \ln \beta ) \varpi (t_i; \alpha , \beta )\right. \nonumber \\&\left. +\alpha (2\varpi ^2(t_i; \alpha , \beta )-\frac{\beta ^\alpha (\ln \beta )^2+t_i^\alpha (\ln t_i)^2}{\beta ^\alpha +t_i^\alpha }) \right] . \end{aligned}$$
(A.4)

The following derivatives are useful for the computation of the Bayes estimates of r(t) and h(t) as discussed in Sect. 4.1.2. Under the LINEX loss function, \(\vartheta (\alpha ,\beta )=\exp \{-dr(t)\}\). Denote \(\iota (t; \alpha , \beta )=\frac{d \beta ^{\alpha } t^{\alpha } \exp \{-d r(t)\}}{\left( \beta ^{\alpha }+t^{\alpha }\right) ^2}\). Thus,

$$\begin{aligned} u_1= & {} \ln \left( \frac{t}{\beta }\right) \iota (t; \alpha , \beta ) , \end{aligned}$$
(A.5)
$$\begin{aligned} u_2= & {} -\frac{\alpha \iota (t; \alpha , \beta )}{\beta } , \end{aligned}$$
(A.6)
$$\begin{aligned} u_{11}= & {} \frac{ (\ln (\frac{t}{\beta }))^2 \left( \beta ^{2 \alpha }+d\beta ^{\alpha } t^{\alpha }-t^{2 \alpha }\right) \iota (t; \alpha , \beta ) }{\left( \beta ^{\alpha }+t^{\alpha }\right) ^2}, \end{aligned}$$
(A.7)
$$\begin{aligned} u_{22}= & {} \frac{\alpha \left( (\alpha +1) \beta ^{2 \alpha }+\beta ^{\alpha } (\alpha d+2) t^{\alpha }-(\alpha -1) t^{2 \alpha }\right) \iota (t; \alpha , \beta )}{(\beta \left( \beta ^{\alpha }+t^{\alpha }\right) )^2}, \end{aligned}$$
(A.8)
$$\begin{aligned} u_{21}= & {} u_{12}=\frac{ \left( \alpha \left( -\beta ^{2 \alpha }-d \beta ^{\alpha } t^{\alpha }+t^{2 \alpha }\right) \ln (\frac{t}{ \beta })-\left( \beta ^{\alpha }+t^{\alpha }\right) ^2\right) \iota (t; \alpha , \beta ) }{\beta \left( \beta ^{\alpha }+t^{\alpha }\right) ^2}. \end{aligned}$$
(A.9)

When the loss function is taken to be the entropy loss function, then \(\vartheta (\alpha ,\beta )=r(t)^{-c}\). Denote \(\Omega (t; \alpha , \beta )=t^\alpha r(t)^{-c}\). We compute the following derivatives:

$$\begin{aligned} u_1= & {} c \beta ^{-\alpha } \ln \left( \frac{t}{\beta }\right) r(t) \Omega (t; \alpha , \beta ) , \end{aligned}$$
(A.10)
$$\begin{aligned} u_2= & {} -\alpha c \beta ^{-(\alpha +1)} r(t)\Omega (t; \alpha , \beta ), \end{aligned}$$
(A.11)
$$\begin{aligned} u_{11}= & {} \frac{c (\ln (\frac{t}{\beta }))^2 \left( \beta ^{\alpha }+c t^{\alpha }\right) \Omega (t; \alpha , \beta )}{\left( \beta ^{\alpha }+t^{\alpha }\right) ^2}, \end{aligned}$$
(A.12)
$$\begin{aligned} u_{22}= & {} \frac{\alpha c \left( (\alpha +1) \beta ^{\alpha }+(\alpha c+1)t^{\alpha }\right) \Omega (t; \alpha , \beta )}{\beta ^2 \left( \beta ^{\alpha }+t^{\alpha }\right) ^2}, \end{aligned}$$
(A.13)
$$\begin{aligned} u_{21}= & {} u_{12}=\frac{c \left( -\beta ^{\alpha }-\alpha \ln (\frac{t}{\beta })\left( \beta ^{\alpha }+c t^{\alpha }\right) -t^{\alpha }\right) \Omega (t; \alpha , \beta )}{\beta \left( \beta ^{\alpha }+t^{\alpha }\right) ^2}. \end{aligned}$$
(A.14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, K., Kayal, S. Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications. Ann. Data. Sci. 10, 89–128 (2023). https://doi.org/10.1007/s40745-020-00292-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40745-020-00292-y

Keywords

Mathematics Subject Classification

Navigation