Skip to main content
Log in

Unraveling the Adsorption and Corrosion Resistance Mechanisms of Pyran-Pyrazole Analogs for Carbon Steel Corrosion in Hydrochloric Acid Based on Practical Approaches and Theoretical Calculations

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

This research aims to scrutinize the corrosion resistance of newly synthesized pyran-pyrazoles named 6-Amino-3-methyl-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (APPC) and 6-Amino-3-methyl-4-(4-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (ANPC) on carbon steel in an acidic medium employing practical and theoretical approaches. The chemical structure of APPC and ANPC was identified through 1H NMR and elemental analysis. The results put on view that both pyran-pyrazoles function as mixed-type inhibitors and have high efficiency as corrosion inhibitors for dissolution prevention of carbon steel in 1M HCl medium through augmenting amount, with up to 91.8% for APPC and 88.2% for ANPC (at 0.001 M and 298 K), and their chemisorption at the carbon steel surface follows the Langmuir adsorption isotherm. The buildup of protective layers of inhibitors on the carbon steel surface was corroborated by scanning electron microscopy (SEM/EDX) surface characterization. Density Functional Theory (DFT), calculation of Fukui functions, Mullikan charges, and Molecular Dynamic Simulation (MDS) examined the APPC and ANPC molecules’ properties, mechanisms, and interactions under different phases and states, especially adsorption behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Farag AA, Mohamed EA, Toghan A (2023) The new trends in corrosion control using superhydrophobic surfaces: a review. Corros Rev 41(1):21–37

    Article  CAS  Google Scholar 

  2. Shaban MM, Negm NA, Farag RK, Fadda AA, Gomaa AE, Farag AA, Migahed MA (2022) Anti-corrosion, antiscalant and anti-microbial performance of some synthesized trimeric cationic imidazolium salts in oilfield applications. J Mol Liq 351:118610

    Article  CAS  Google Scholar 

  3. Hashem HE, Farag AA, Mohamed EA, Azmy EM (2022) Experimental and theoretical assessment of benzopyran compounds as inhibitors to steel corrosion in aggressive acid solution. J Mol Struct 1249:131641

    Article  CAS  Google Scholar 

  4. Shaban SM, Badr E, Shenashen MA, Farag AA (2021) Fabrication and characterization of encapsulated Gemini cationic surfactant as anticorrosion material for carbon steel protection in down-hole pipelines. Environ Technol Innovat 23:101603

    Article  CAS  Google Scholar 

  5. Farag AA, Ismail AS, Migahed MA (2020) Squid By-product gelatin polymer as an eco-friendly corrosion inhibitor for carbon steel in 0.5 M H2SO4 solution: experimental, theoretical, and Monte Carlo simulation studies. J Bio-Tribo-Corros 6:1–15

    Article  Google Scholar 

  6. Farag AA, Migahed MA, Al-Sabagh AM (2015) Adsorption and inhibition behavior of a novel Schiff base on carbon steel corrosion in acid media. Egypt J Pet 24(3):307–315

    Article  Google Scholar 

  7. Farag AA, Badr EA (2020) Non-ionic surfactant loaded on gel capsules to protect downhole tubes from produced water in acidizing oil wells. Corros Rev 38(2):151–164

    Article  CAS  Google Scholar 

  8. Mohamed EA, Hashem HE, Azmy EM, Negm NA, Farag AA (2021) Synthesis, structural analysis, and inhibition approach of novel eco-friendly chalcone derivatives on API X65 steel corrosion in acidic media assessment with DFT & MD studies. Environ Technol Innovation 24:101966

    Article  CAS  Google Scholar 

  9. Cherrak K, Belghiti ME, Berrissoul A, El Massaoudi M, El Faydy M, Taleb M, Radi S, Zarrouk A, Dafali A (2020) Pyrazole carbohydrazide as corrosion inhibitor for mild steel in HCl medium: experimental and theoretical investigations. Surf Interfaces 20:100578

    Article  CAS  Google Scholar 

  10. Sayed GH, Azab ME, Anwer KE, Raouf MA, Negm NA (2018) Pyrazole, pyrazolone and enaminonitrile pyrazole derivatives: synthesis, characterization and potential in corrosion inhibition and antimicrobial applications. J Mol Liq 252:329–338

    Article  CAS  Google Scholar 

  11. Zarrok H, Zarrouk A, Salghi R, Ramli Y, Hammouti B, Assouag M, Essassi EM, Oudda H, Taleb M (2012) 3,7-Dimethylquinoxalin-2-(1H)-one for inhibition of acid corrosion of carbon steel. J Chem Pharm Res 4(12):5048–5055

    CAS  Google Scholar 

  12. Zarrok H, Al Mamari K, Zarrouk A, Salghi R, Hammouti B, Al-Deyab SS, Essassi EM, Bentiss F, Oudda H (2012) Gravimetric and electrochemical evaluation of 1-allyl-1Hindole-2,3-dione of carbon steel corrosion in hydrochloric acid. Int J Electrochem Sci 7:10338–10357

    Article  CAS  Google Scholar 

  13. Zarrouk A, Messali M, Aouad MR, Assouag M, Zarrok H, Salghi R, Hammouti B, Chetouani A (2012) Some new ionic liquids derivatives: synthesis, characterization andcomparative study towards corrosion of C-steel in acidic media. J Chem Pharm Res 4(7):3427–3436

    CAS  Google Scholar 

  14. Zarrouk A, Hammouti B, Zarrok H, Warad I, Bouachrine M (2011) N-containing organic compound as an effective corrosion inhibitor for copper In 2M HNO3: weight loss and quantum chemical study. Der Pharma Chem 3(5):263–271

    CAS  Google Scholar 

  15. Zarrouk A, Hammouti B, Touzani R, Al-Deyab SS, Zertoubi M, Dafali A, Elkadiri S (2011) Comparative study of new quinoxaline derivatives towards corrosion of copper in nitric acid. Int J Electrochem Sci 6:4939–4952

    Article  CAS  Google Scholar 

  16. Zarrok H, Salghi R, Zarrouk A, Hammouti B, Oudda H, Bazzi Lh, Bammou L, Al-Deyab SS (2012) Investigation of the inhibition effect of N-1-Naphthylethylenediamine Dihydrochloride Monomethanolate on the C38 steel corrosion in 05M H2SO4. Der Pharma Chem. 4(1):407–416

    Google Scholar 

  17. Kumar H, Yadav V, Kumari A (2022) Adsorption, corrosion inhibition mechanism, and computational studies of Azadirachta indica extract for protecting mild steel: Sustainable and green approach. J Phys Chem Solids 165:110690

    Article  CAS  Google Scholar 

  18. El Defrawy AM, Abdallah M, Al-Fahemi JH (2019) Electrochemical and theoretical investigation for some pyrazolone derivatives as inhibitors for the corrosion of C-steel in 0.5 M hydrochloric acid. J Mol Liq 288:110994

    Article  Google Scholar 

  19. Khudhair ZT, Shihab MS (2020) Study of synergistic effect of some pyrazole derivatives as corrosion inhibitors for mild steel in 1 M H2SO4. Surf Engin Appl Electrochem 56:601–609

    Article  Google Scholar 

  20. Gao X, Huang QS, Ma DY, Jiang YM, Ren TG, Guo XG, Zhang JL, Guo L (2021) Improving environmental adaptability and long-term corrosion resistance of Mg alloys by pyrazole ionic liquids: experimental and theoretical studies. J Mol Liq 333:115964

    Article  CAS  Google Scholar 

  21. El-Katori EE, El-Saeed RA, Abdou MM (2022) Anti-corrosion and antimicrobial evaluation of novel water-soluble bis azo pyrazole derivative for carbon steel pipelines in petroleum industries by experimental and theoretical studies. Arab J Chem 15:104373

    Article  CAS  Google Scholar 

  22. Desai NC, Vaja DV, Monapara JD, Manga V, Vani T (2021) Synthesis, biological evaluation, and molecular docking studies of novel pyrazole, pyrazoline-clubbed pyridine as potential antimicrobial agents. J Heterocycl Chem 58(3):737–750

    Article  CAS  Google Scholar 

  23. Bennani FE, Doudach L, Cherrah Y, Ramli Y, Karrouchi K, Faouzi MEA (2020) Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg Chem 97:103470

    Article  CAS  PubMed  Google Scholar 

  24. Wu Z, Yang W, Hou S, Xie D, Yang J, Liu L, Yang S (2021) In vivo antiviral activity and disassembly mechanism of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives against Tobacco mosaic virus. Pestic Biochem Physiol 173:104771

    Article  CAS  PubMed  Google Scholar 

  25. Singh P, Kumar K, Quraishi MA, Haque J, Singh G (2018) Bispyranopyrazoles as green corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical approach. ACS Omega 3(9):11151–11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dohare P, Ansari KR, Quraishi MA, Obot IB (2017) Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: experimental and quantum chemical study. J Ind Eng Chem 52:197–210

    Article  CAS  Google Scholar 

  27. Yadav DK, Quraishi MA (2012) Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind Eng Chem Res 51:8194–8210

    Article  CAS  Google Scholar 

  28. Yadav M, Gope L, Kumari N, Yadav P (2016) Corrosion inhibition performance of pyranopyrazole derivatives for mild steel in HCl solution: gravimetric, electrochemical and DFT studies. J Mol Liq 216:78–86

    Article  CAS  Google Scholar 

  29. Benzekri Z, Sibous S, Serrar H, Boukhris S, Hassikou A, Ghailane R, Souizi A (2019) Efficient synthesis of 1,4-Dihydropyrano[2,3-c]pyrazoles using snail shell as a biodegradable and reusable catalyst. Org Prep Proced Int 51:566–575

    Article  CAS  Google Scholar 

  30. Salcı A, Yüksel H, Solmaz R (2022) Experimental studies on the corrosion inhibition performance of 2-(2-aminophenyl)benzimidazole for mild steel protection in HCl solution. J Taiwan Inst Chem Eng 134:104349

    Article  Google Scholar 

  31. A. Standard, G1–03," Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens vol. 3, Annual Book of ASTM Standards, 2003, pp. 17–25.

  32. About S, Hsissou R, Chebabe D, Erramli H, Safi Z, Wazzan N, Berisha A, Reka A, Hajjaji N (2022) Investigation of two corrosion inhibitors in acidic medium using weight loss, electrochemical study, surface analysis, and computational calculation. J Bio- Tribo-Corros 8(3):86

    Article  Google Scholar 

  33. M. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, Ga. Petersson, Gaussian 09, revision D. 01, (2009).

  34. Materials Studio, Revision 8.0, Accelrys Inc., San Diego, USA (2016).

  35. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  36. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  37. Kesari P, Udayabhanu G (2023) Investigation of Vitamin B12 as a corrosion inhibitor for mild steel in HCl solution through gravimetric and electrochemical studies. Ain Shams Eng J 14(4):101920

    Article  Google Scholar 

  38. Lebrini M, Robert F, Vezin H, Roos C (2010) Electrochemical and quantum chemical studies of some indole derivatives as corrosion inhibitors for C38 steel in molar hydrochloric acid. Corros Sci 52:3367–3376

    Article  CAS  Google Scholar 

  39. Arshad I, Qureshi K, Saleemi AS, Abdullah A, Bahajjaj AAA, Ali S, Bokhari A (2023) Melamine–isatin tris Schiff base as an efficient corrosion inhibitor for mild steel in 0.5 molar hydrochloric acid solution: weight loss, electrochemical and surface studies. RSC Adv 13:19301–19311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang D, Liu SH, Shao YP, Xu SD, Zhao LL, Liao QQ, Ge HH (2016) Electrochemical and XPS studies of alkyl imidazoline on the corrosion inhibition of carbon steel in citric acid solution. Corros Rev 34:295–304

    Article  CAS  Google Scholar 

  41. Rouifi Z, Rbaa M, Abousalem AS, Benhiba F, Laabaissi T, Oudda H, Lakhrissi B, Guenbour A, Warad I, Zarrouk A (2020) Synthesis, characterization and corrosion inhibition potential of newly benzimidazole derivatives: combining theoretical and experimental study. Surf Interfaces 18:10044

    Google Scholar 

  42. Mishra A, Verma C, Chauhan S, Quraishi MA, Ebenso EE, Srivastava V (2018) Synthesis, characterization, and corrosion inhibition performance of 5-aminopyrazole carbonitriles towards mild steel acidic corrosion. J Bio- Tribo-Corros 4:53

    Article  Google Scholar 

  43. Ouakki M, Galai BM, Aribou Z, Benzekri Z, El Assiri E, Dahmani K, Ech-chihbi E, Abousalem AS, Boukhris S, Cherkaoui M (2022) Detailed experimental and computational explorations of pyran derivatives as corrosion inhibitors for mild steel in 10 M HCl: Electrochemical/surface studies, DFT modeling, and MC simulation. J. Mol. Struct. 1261:132784

    Article  CAS  Google Scholar 

  44. Lgaz H, Salghi R, Chaouiki A, Shubhalaxmi Jodeh S, Subrahmanya Bhat K (2018) Pyrazoline derivatives as possible corrosion inhibitors for mild steel in acidic media: a combined experimental and theoretical approach. Cogent Eng 5(1):1441585

    Article  Google Scholar 

  45. Montemor MF, Pinto R, Ferreira MGS (2009) Chemical composition and corrosion protection of silane films modified with CeO nanoparticles. Electrochim Acta 54:5179–5189

    Article  CAS  Google Scholar 

  46. Karakus N, Sayin K (2015) The investigation of corrosion inhibition efficiency on some benzaldehyde thiosemicarbazones and their thioletautomers: computational study. J Taiwan Inst Chem Eng 48:95–102

    Article  CAS  Google Scholar 

  47. Hamani H, Douadi T, Daoud D, Al-Noaimi M, Rikkouh RA, Chafaa S (2017) 1-(4-Nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: weight loss, electrochemical, thermodynamic and quantum chemical studies. J Electroanal Chem 801:425–438

    Article  CAS  Google Scholar 

  48. Obot IB, Umoren SA, Gasem ZM, Suleiman R, Ali BE (2015) Theoretical prediction and electrochemical evaluation of vinylimidazole and allylimidazole as corrosion inhibitors for mild steel in 1 M HCl. J Ind Eng Chem 21:1328–1339

    Article  CAS  Google Scholar 

  49. About H, El Faydy M, Benhiba F, Rouifi Z, Boudalia M, Guenbour A, Zarrok H, Lakhrissi B, Oudda H, Warad I, Zarrouk A (2019) Synthesis, experimental and theoretical investigation of tetrazole derivative as an effective corrosion inhibitor for mild steel in 1 M HCl. J Bio- Tribo-Corros 5:1–15

    Article  Google Scholar 

  50. Zheng X, Zhang S, Li W, Yin L, He J, Wu J (2014) Investigation of 1-butyl-3-methyl-1Hbenzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution. Corros Sci 80:383–392

    Article  CAS  Google Scholar 

  51. Boughoues Y, Benamira M, Messaadia L, Ribouh N (2020) Adsorption and corrosion inhibition performance of some environmental friendly organic inhibitors for mild steel in HCl solution via experimental and theoretical study. Colloids Surf 593:124610

    Article  CAS  Google Scholar 

  52. Tawfik SM, Negm NA (2016) Synthesis, characterization and evaluation of some anionic surfactants with phosphate group as a biodegradable corrosion inhibitor for carbon steel in acidic solution. J Mol Liq 215:185–196

    Article  CAS  Google Scholar 

  53. Li XH, Deng SD, Fu H (2011) Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H2SO4 solutions. Corros Sci 53:302–309

    Article  CAS  Google Scholar 

  54. Ma X, Wang J, Yu S, Chen X, Li J, Zhu H, Hu Z (2020) Synthesis, experimental and theoretical studies of triazine derivatives with surface activity as effective corrosion inhibitors for medium carbon steel in acid medium. J Mol Liq 315:113711

    Article  CAS  Google Scholar 

  55. Ali SA, Al-Muallem HA, Rahman SU, Saeed MT (2008) Bis-isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic media. Corros Sci 50:3070–3077

    Article  CAS  Google Scholar 

  56. Guo L, Zhu SH, Zhang ST (2015) Experimental and theoretical studies of benzalkonium chloride as an inhibitor for carbon steel corrosion in sulfuric acid. J Ind Eng Chem 24:174–180

    Article  CAS  Google Scholar 

  57. Jiang L, Qiang Y, Lei Z, Wang J, Qin Z, Xiang B (2018) Excellent corrosion inhibition performance of novel quinoline derivatives on mild steel in HCl media: experimental and computational investigations. J Mol Liq 255:53–63

    Article  CAS  Google Scholar 

  58. Wang XY (2010) A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corros Sci 52:1268–1276

    Article  CAS  Google Scholar 

  59. Rouifi Z, Benhiba F, El Faydy M, Laabaissi T, About H, Oudda H, Warad I, Guenbour A, Lakhrissi B, Zarrouk A (2019) Performance and computational studies of new soluble triazole as corrosion inhibitor for carbon steel in HCl. Chem Data Collect 22:100242

    Article  CAS  Google Scholar 

  60. Obot IB, Onyeachu IB, Wazzan N, Al-Amri AH (2019) Theoretical and experimental investigation of two alkyl carboxylates as corrosion inhibitors for steel in acidic medium. J Mol Liq 279:190–207

    Article  CAS  Google Scholar 

  61. El Faydy M, Benhiba F, Berisha A, Kerroum Y, Jama C, Lakhrissi B, Guenbour A, Warad I, Zarrouk A (2020) An experimental-coupled empirical investigation on the corrosion inhibitory action of 7-alkyl-8-Hydroxyquinolines on C35E steel in HCl electrolyte. J Mol Liq 317:113973

    Article  Google Scholar 

  62. El Adnani Z, Mcharfi M, Sfaira M, Benzakour M, Benjelloun AT, Touhami ME (2013) DFT theoretical study of 7-R-3methylquinoxalin-2(1H)-thiones (R=H; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros Sci 68:223–230

    Article  Google Scholar 

  63. Hegazya MA, Badawi AM, Abd El Rehim SS, Kamel WM (2013) Corrosion inhibition of carbon steel using novelN-(2-(2-mercaptoacetoxy) ethyl)-N, N-dimethyl dodecan-1 aminium bromide during acid pickling. Corros Sci 69:110–122

    Article  Google Scholar 

  64. Deng S, Li X, Xie X (2014) Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corros Sci 80:276–289

    Article  CAS  Google Scholar 

  65. Zarrouk A, El Ouali I, Bouachrine M, Hammouti B, Ramli Y, Essassi EM, Warad I, Aouniti A, Salghi R (2013) Theoretical approach to the corrosion inhibition efficiency of some quinoxaline derivatives of steel in acid media using the DFT method. Res Chem Intermed 39:1125–1133

    Article  CAS  Google Scholar 

  66. Murmu M, Saha SK, Bhaumick P, Murmu NC, Hirani H, Banerjee P (2020) Corrosion inhibition property of azomethine functionalized triazole derivatives in 1 mol L− 1 HCl medium for mild steel: experimental and theoretical exploration. J Mol Liq 313:113508

    Article  CAS  Google Scholar 

  67. Kokalj A (2012) On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chem Phys 393(1):1–12

    Article  CAS  Google Scholar 

  68. Awad MK, Mustafa MR, Elnga MMA (2010) Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface. J Mol Struct THEOCHEM 959(1–3):66–74

    Article  CAS  Google Scholar 

  69. Gao G, Liang C (2007) Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass. Electrochim Acta 52:4554–4559

    Article  CAS  Google Scholar 

  70. Obi-Egbedi NO, Essien KE, Obot IB, Ebenso EE (2011) 1,2-Diamino anthrax quinoneas corrosion inhibitor for mild steel in hydrochloric acid: weight loss and quantum chemical study. Int J Electrochem Sc 6:913–930

    Article  CAS  Google Scholar 

  71. Benhiba F, Sebbar NK, Bourazmi H, Belghiti ME, Hsissou R, Hökelek T, Bellaouchou A, Guenbour A, Warad I, Oudda H, Zarrouk A, Essassi EM (2021) Corrosion inhibition performance of 4-(prop-2-ynyl)- [1,4]-benzothiazin-3-one against mild steel in 1 M HCl solution: experimental and theoretical studies. Int J Hydrog Energy 46:25800–25818

    Article  CAS  Google Scholar 

  72. Singh A, Ansari KR, Alanazi AK, Quraishi MA, Banerjee P (2022) Biological macromolecule as an eco-friendly high temperature corrosion inhibitor for P110 steel under sweet environment in NACE brine ID196: Experimental and computational approaches. J Mol Liq 345:117866

    Article  CAS  Google Scholar 

  73. Shekara P, Kudva J, Sadashiva R, Naral D, Shetty AN (2022) Investigation of the inhibition effect of newly synthesized pyrazoline derivative on mild steel in hydrochloric acid medium by experimental and theoretical approach. Chem Data Collect 37:100808

    Article  CAS  Google Scholar 

  74. El Faydy M, Benhiba F, About H, Kerroum Y, Guenbour A, Lakhrissi B, Warad I, Verma C, Sherif ESM, Ebenso EE, Zarrouk A (2020) Experimental and computational investigations on the anti-corrosive and adsorption behavior of 7-N, N’-dialkyaminomethyl-8-Hydroxyquinolines on C40E steel surface in acidic medium. J Colloid Interface Sci 576:330–344

    Article  PubMed  Google Scholar 

  75. El-Aouni N, Hsissou R, Safi Z, About S, Benhiba F, El Azzaoui J, Haldhar R, Wazzan N, Guo L, Erramli H, Elharfi A, El Bachiri A, Rafik M (2021) Performance of two new epoxy resins as potential corrosion inhibitors for carbon steel in 1MHCl medium: combining experimental and computational approaches. Colloids Surf 626:127066

    Article  CAS  Google Scholar 

  76. Walton IM, Cox JM, Benson CA, Patel DDG, Chen YS, Benedict JB (2016) The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks, new. J Chem 40:101–106

    CAS  Google Scholar 

  77. Abdelsalam MM, Bedair MA, Hassan AM, Heakal BH, Younis A, Elbialy ZI, Badawy MA, Fawzy HED, Fareed SA (2022) Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution. Arab J Chem 15:103491

    Article  CAS  Google Scholar 

  78. Benhiba F, Hsissou R, Abderrahim K, Serrar H, Rouifi Z, Boukhris S, Kaichouh G, Bellaouchou A, Guenbour A, Oudda H, Warad I, Zarrouk A (2022) Development of new pyrimidine derivative inhibitor for mild steel corrosion in acid medium. J Bio- Tribo-Corros 8:36

    Article  Google Scholar 

  79. Mzioud K, Habsaoui A, Rached S, Lachhab R, Dkhireche N, Ouakki M, Galai M, El Fartah S, Ebn Touhami M (2022) Synergistic Effect from Allium Sativum Essential Oil and Diethylthiourea for Corrosion Inhibition of Carbon Steel in 0.5 M H2SO4 Medium, in: A. Vaseashta, M.E. Achour, M. Mabrouki, D. Fasquelle, A. Tachafine (Eds.), Proc. Sixth Int. Symp. Dielectr. Mater. Appl. ISyDMA’6, Springer International Publishing, Cham, pp. 251–266.

  80. Rashid KH (2023) New pyrazole derivative as effective corrosion inhibitor for carbon steel in 1 M HCl: experimental and theoretical analysis. J Mol Struct 1287:135661

    Article  CAS  Google Scholar 

  81. Mzioud K, Habsaoui A, Ouakki M, Galai M, El Fartah S, Ebn Touhami M (2020) Inhibition of copper corrosion by the essential oil of Allium sativum in 05M H2SO4 solutions. SN Appl Sci 2:1611

    Article  CAS  Google Scholar 

  82. Solmaz R, Kardas G, Yazici B, Erbil M (2008) Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media. Colloids Surf 312:7–17

    Article  CAS  Google Scholar 

Download references

Funding

There were no research grants for this work from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

FE and ZE contributed toward conceptualization; data curation; formal analysis; software; investigation; methodology; writing—original draft; and writing—review & editing. ME, MO, ZB, SB, SB, FB, and ME contributed toward conceptualization; data curation; formal analysis; methodology; writing—original draft; and writing—review & editing. AZ contributed toward writing—original draft and writing—review & editing.

Corresponding authors

Correspondence to F. Elfarhani or A. Zarrouk.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Applicable for both human and/or animal studies. Ethical committees, internal review boards, and guidelines followed must be named. When applicable, additional headings with statements on consent to participate and consent to publish are also required. Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfarhani, F., Faydy, M.E., Ouakki, M. et al. Unraveling the Adsorption and Corrosion Resistance Mechanisms of Pyran-Pyrazole Analogs for Carbon Steel Corrosion in Hydrochloric Acid Based on Practical Approaches and Theoretical Calculations. J Bio Tribo Corros 10, 33 (2024). https://doi.org/10.1007/s40735-024-00831-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-024-00831-7

Keywords

Navigation