Skip to main content
Log in

Investigation of Two Corrosion Inhibitors in Acidic Medium Using Weight Loss, Electrochemical Study, Surface Analysis, and Computational Calculation

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The aim of this research paper is comparing the effectiveness of two epoxies compounds (TBA and TEG) against the corrosion carbon steel (CS) in an acidic medium (0.5 M of H2SO4). To perform this study, many techniques and methods are used. Concern, the anti-corrosion tests were performed by weight loss, electrochemical techniques, and surface analysis. In order to confirm the experimental tests, computational calculation was used such as MC, DFT, and so on. The results show that the TBA has great corrosion efficiency than TEG. The SEM/EDS indicates that the surface of CS in the presence of TBA is clearer than TEG. It is crystal clear that these two inhibitors show good anti-corrosion behavior and the TBA inhibits the corrosion more than TEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Abbout S (2020) Green inhibitors to reduce the corrosion damage. Corrosion. IntechOpen, London

    Google Scholar 

  2. Akinbulumo OA, Odejobi OJ, Odekanle EL (2020) Thermodynamics and adsorption study of the corrosion inhibition of CS by Euphorbia heterophylla L. extract in 1.5 μM HCl. Results Mater 5:174. https://doi.org/10.1016/j.rinma.2020.100074

    Article  Google Scholar 

  3. Ahamad I, Quraishi MA (2010) Mebendazole: New and efficient corrosion inhibitor for CS in acid medium. Corros Sci 52:651–656. https://doi.org/10.1016/j.corsci.2009.10.012

    Article  CAS  Google Scholar 

  4. Zouarhi M, Abbout S, Benzidia B, Chellouli M, Erramli H, Hassane SOS, Bettach N (2019) Evaluation of a new formulation derived from Aleurites moluccana seeds oil as a green corrosion inhibitor for iron in acidic medium. Anal Bioanal Electrochem 11:18

    Google Scholar 

  5. Zouarhi M, Chellouli M, Abbout S, Hammouch H, Dermaj A, Hassane SOS, Decaro P, Bettach N, Hajjaji N, Srhiri A (2018) Inhibiting effect of a green corrosion inhibitor containing Jatropha curcas seeds oil for iron in an acidic medium: Port. Electrochim Acta 36:179–195. https://doi.org/10.4152/pea.201803179

    Article  CAS  Google Scholar 

  6. Chebabe D, Abdeddine I, Bariki S, Oubair A, Abbout S, Damej M, Makayssi A (2019) The effect of the chemical structure of benzopyridine and benzimidazole on their corrosion inhibiting action of ordinary steel in acidic medium. Anal Bioanal Electrochem 11:15

    Google Scholar 

  7. Thomas A, Prajila M, Shainy KM, Joseph A (2020) A green approach to corrosion inhibition of CS in hydrochloric acid using fruit rind extract of Garcinia indica (Binda). J Mol Liq 312:113369. https://doi.org/10.1016/j.molliq.2020.113369

    Article  CAS  Google Scholar 

  8. Abbout S, Chellouli M, Zouarhi M, Benzidia B, Chebabe D, Dermaj A, Erramli H, Bettach N, Hajjaji N (2018) New formulation based on Ceratonia siliqua L seed oil, as a green corrosion inhibitor of iron in acidic medium. Anal Bioanal Electrochem 10:789

    CAS  Google Scholar 

  9. Rehioui M, Abbout S, Benzidia B, Hammouch H, Erramli H, Daoud NA, Badrane N, Hajjaji N (2021) Corrosion inhibiting effect of a green formulation based on Opuntia dillenii seed oil for iron in acid rain solution. Heliyon 7:e06674. https://doi.org/10.1016/j.heliyon.2021.e06674

    Article  Google Scholar 

  10. Hsissou R, Benzidia B, Rehioui M, Berradi M, Berisha A, Assouag M, Hajjaji N, Elharfi A (2020) Anticorrosive property of hexafunctional epoxy polymer HGTMDAE for E24 CS corrosion in 1.0 M HCl: gravimetric, electrochemical, surface morphology and molecular dynamic simulations. Polym Bull 77:3577–3601. https://doi.org/10.1007/s00289-019-02934-5

    Article  CAS  Google Scholar 

  11. Abbout S, Chebabe D, Zouarhi M, Rehioui M, lakbaibi Z, Hajjaji N (2021) Ceratonia siliqua L seeds extract as eco-friendly corrosion inhibitor for CS in 1M HCl: characterization, electrochemical, surface analysis, and theoretical studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130611

    Article  Google Scholar 

  12. Abbout S, Hsissou R, Erramli H, Chebabe D, Salim R, Kaya S, Hajjaji N (2021) Gravimetric, electrochemical and theoretical study, and surface analysis of novel epoxy resin as corrosion inhibitor of CS in 0.5 M H2SO4 solution. J Mol Struct 1245:131014. https://doi.org/10.1016/j.molstruc.2021.131014

    Article  CAS  Google Scholar 

  13. El Janati A, Еlmsеllеm H, Rodi YK, Ouzidan Y, Ramdani M, Mokhtarі M, Abdеl-Rahman І, Alaoui IC, Chahdi FO, Kusuma HS (2020) A comparative study of two corrosion inhibitors: 1,4-diallyl-6-chloroquinoxaline 2,3-(1H,4H)-dione (1a) and 1,4-diallyl-6-nitroquinoxaline-2,3-(1H,4H)-dione (1b). Int J Corros Scale Inhib. https://doi.org/10.1675/2305-6894-2020-9-2-17

    Article  Google Scholar 

  14. Rbaa M, Galai M, Kacimi Y, Ouakki M, Touir R, Lakhrissi B, Touhami ME (2017) Adsorption properties and inhibition of CS corrosion in a hydrochloric solution by 2-(4,5-diphenyl-4,5-dihydro-1h-imidazol-2-yl)-5-methoxyphenol: Port. Electrochim Acta 35:323–338. https://doi.org/10.4152/pea.201706323

    Article  CAS  Google Scholar 

  15. Erdoğan Ş, Safi ZS, Kaya S, Işın DÖ, Guo L, Kaya C (2017) A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J Mol Struct 1134:751–761. https://doi.org/10.1016/j.molstruc.2017.01.037

    Article  CAS  Google Scholar 

  16. Rbaa M, Ouakki M, Galai M, Berisha A, Lakhrissi B, Jama C, Warad I, Zarrouk A (2020) Simple preparation and characterization of novel 8-hydroxyquinoline derivatives as effective acid corrosion inhibitor for CS: experimental and theoretical studies. Colloids and Surf A: Physicochem Eng Asp 602:1094. https://doi.org/10.1016/j.colsurfa.2020.125094

    Article  CAS  Google Scholar 

  17. El-Aouni N, Hsissou R, Safi Z, Abbout S, Benhiba F, El Azzaoui J, Haldhar R, Wazzan N, Guo L, Erramli H, Elharfi A, El Bachiri A, Rafik M (2021) Performance of two new epoxy resins as potential corrosion inhibitors for CS in 1MHCl medium: combining experimental and computational approaches. Colloids Surf A: Physicochem Eng Asp 626:1066. https://doi.org/10.1016/j.colsurfa.2021.127066

    Article  CAS  Google Scholar 

  18. Zhang D, An Z, Pan Q, Gao L, Zhou G (2006) Comparative study of bis-piperidiniummethyl-urea and mono-piperidiniummethyl-urea as volatile corrosion inhibitors for CS. Corros Sci 48:1437–1448. https://doi.org/10.1016/j.corsci.2005.06.007

    Article  CAS  Google Scholar 

  19. Hsissou R, Abbout S, Safi Z, Benhiba F, Wazzan N, Guo L, Nouneh K, Briche S, Erramli H, Ebn Touhami M, Assouag M, Elharfi A (2021) Synthesis and anticorrosive properties of epoxy polymer for CS in [1 M] HCl solution: electrochemical, AFM, DFT and MD simulations. Constr Build Mater 270:121454. https://doi.org/10.1016/j.conbuildmat.2020.121454

    Article  CAS  Google Scholar 

  20. Hsissou R, Dagdag O, Abbout S, Benhiba F, Berradi M, El Bouchti M, Berisha A, Hajjaji N, Elharfi A (2019) Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 CS in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. J Mol Liq 284:182–192. https://doi.org/10.1016/j.molliq.2019.03.180

    Article  CAS  Google Scholar 

  21. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  Google Scholar 

  22. Becke A (1993) Density-functional thermochemistry III. The role of exact exchange. J. Chem Phys 98:5648

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  24. Frisch, A. (2009) Gaussian 09w reference. Wallingford, USA, 25p.

  25. Dennington, R., T.A. Keith, and J.M. Millam (2016) GaussView, version 6.0. 16. Semichem Inc. Shawnee Mission KS.

  26. Andrienko, G. (2017) Chemcraft-graphical software for visualization of quantum chemistry computations, version 1.8 (build 5.18 b).

  27. Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113. https://doi.org/10.1021/jp020124t

    Article  CAS  Google Scholar 

  28. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  29. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458. https://doi.org/10.1002/jcc.540161202

    Article  CAS  Google Scholar 

  30. Guo L, Safi ZS, Kaya S, Shi W, Tüzün B, Altunay N, Kaya C (2018) Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study. Front Chem 6:155. https://doi.org/10.3389/fchem.2018.00155

    Article  CAS  Google Scholar 

  31. Gómez B, Likhanova NV, Domínguez-Aguilar MA, Martínez-Palou R, Vela A, Gázquez JL (2006) Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles. J Phys Chem B 110:8928–8934. https://doi.org/10.1021/jp057143y

    Article  CAS  Google Scholar 

  32. Saleh, Z.A. and D.K. Taha, Calculation of Ionization energies, electron affinities, hardnesses and electro negativites, using many bases set of many methods.

  33. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  Google Scholar 

  34. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711. https://doi.org/10.1021/ja00279a008

    Article  CAS  Google Scholar 

  35. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218(4574):747–754

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Local softness and chemical reactivity in the molecules CO, SCN− and H2CO. J Mol Struct (Thoechem) 163:305–313. https://doi.org/10.1016/0166-1280(88)80397-X

    Article  Google Scholar 

  37. Cárdenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hypersoftness, and electrostatic potential. J Phys Chem A 113:8660–8667. https://doi.org/10.1021/jp902792n

    Article  CAS  Google Scholar 

  38. Martínez-Araya JI (2015) Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J Math Chem 53:451–465. https://doi.org/10.1007/s10910-014-0437-7

    Article  CAS  Google Scholar 

  39. Dagdag O, Safi Z, Wazzan N, Erramli H, Guo L, Mkadmh AM, Verma C, Ebenso EE, El Gana L, El Harfi A (2020) Highly functionalized epoxy macromolecule as an anti-corrosive material for CS: computational (DFT, MDS), surface (SEM-EDS) and electrochemical (OCP, PDP, EIS) studies. J Mol Liq 302:112535. https://doi.org/10.1016/j.molliq.2020.112535

    Article  CAS  Google Scholar 

  40. Thaçi V, Hoti R, Berisha A, Bogdanov J (2020) Corrosion study of copper in aqueous sulfuric acid solution in the presence of (2E,5E)-2,5-dibenzylidenecyclopentanone and (2E,5E)-bis[(4-dimethylamino)benzylidene]cyclopentanone: experimental and theoretical study. Open Chem 18:1412–1420. https://doi.org/10.1515/chem-2020-0172

    Article  CAS  Google Scholar 

  41. Hsissou R, Benhiba F, Abbout S, Dagdag O, Benkhaya S, Berisha A, Erramli H, Elharfi A (2020) Trifunctional epoxy polymer as corrosion inhibition material for CS in 1.0 M HCl: MD simulations, DFT and complexation computations. Inorg Chem Commun 115:107858. https://doi.org/10.1016/j.inoche.2020.107858

    Article  CAS  Google Scholar 

  42. Hsissou R, Abbout S, Seghiri R, Rehioui M, Berisha A, Erramli H, Assouag M, Elharfi A (2020) Evaluation of corrosion inhibition performance of phosphorus polymer for CS in [1 M] HCl: computational studies (DFT, MC and MD simulations). J Market Res 9:2691–2703. https://doi.org/10.1016/j.jmrt.2020.01.002

    Article  CAS  Google Scholar 

  43. Dagdag O, Berisha A, Safi Z, Hamed O, Jodeh S, Verma C, Ebenso EE, El Harfi A (2020) DGEBA-polyaminoamide as effective anti-corrosive material for 15CDV6 steel in NaCl medium: computational and experimental studies. J Appl Polym Sci 137:48402. https://doi.org/10.1002/app.48402

    Article  CAS  Google Scholar 

  44. Dagdag O, Hsissou R, El Harfi A, Berisha A, Safi Z, Verma C, Ebenso EE, Ebn Touhami M, El Gouri M (2020) Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies. Surf Interfaces 18:100454. https://doi.org/10.1016/j.surfin.2020.100454

    Article  CAS  Google Scholar 

  45. Jessima SJHM, Berisha A, Srikandan SS, Subhashini S (2020) Preparation, characterization, and evaluation of corrosion inhibition efficiency of sodium lauryl sulfate modified chitosan for CS in the acid pickling process. J Mol Liquids 320:1382. https://doi.org/10.1016/j.molliq.2020.114382

    Article  CAS  Google Scholar 

  46. Bahrami MJ, Hosseini SMA, Pilvar P (2010) Experimental and theoretical investigation of organic compounds as inhibitors for CS corrosion in sulfuric acid medium. Corros Sci 52:2793–2803. https://doi.org/10.1016/j.corsci.2010.04.024

    Article  CAS  Google Scholar 

  47. Cooper J, Zhang J, Grant C (2012) Ab initio calculation of ionization potential and electron affinity of six common explosive compounds. Rep Theor Chem 1:11. https://doi.org/10.2147/RTC.S36686

    Article  Google Scholar 

  48. Dewar MJ, Thiel W (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 99:4899–4907. https://doi.org/10.1021/ja00457a004

    Article  CAS  Google Scholar 

  49. Costa JM, Lluch JM (1984) The use of quantum mechanics calculations for the study of corrosion inhibitors. Corros Sci 24:929–933. https://doi.org/10.1016/0010-938X(84)90113-6

    Article  CAS  Google Scholar 

  50. Dagdag O, El Harfi A, El Gouri M, Safi Z, Jalgham RTT, Wazzan N, Verma C, Ebenso EE, Pramod Kumar U (2019) Anticorrosive properties of hexa (3-methoxy propan-1,2-diol) cyclotri-phosphazene compound for CS in 3% NaCl medium: gravimetric, electrochemical, DFT and Monte Carlo simulation studies. Heliyon 5:e01340. https://doi.org/10.1016/j.heliyon.2019.e01340

    Article  Google Scholar 

  51. Obi-Egbedi NO, Obot IB (2011) Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on CS corrosion in H2SO4. Corros Sci 53:263–275. https://doi.org/10.1016/j.corsci.2010.09.020

    Article  CAS  Google Scholar 

  52. El Faydy M, Benhiba F, Berisha A, Kerroum Y, Jama C, Lakhrissi B, Guenbour A, Warad I, Zarrouk A (2020) An experimental-coupled empirical investigation on the corrosion inhibitory action of 7-alkyl-8-hydroxyquinolines on C35E steel in HCl electrolyte. J Mol Liq 317:113973. https://doi.org/10.1016/j.molliq.2020.113973

    Article  CAS  Google Scholar 

  53. Alija A, Gashi D, Plakaj R, Omaj A, Thaçi V, Reka A, Avdiaj S, Berisha A (2020) A theoretical and experimental study of the adsorptive removal of hexavalent chromium ions using graphene oxide as an adsorbent. Open Chem 18:936–942. https://doi.org/10.1515/chem-2020-0148

    Article  CAS  Google Scholar 

  54. Ali SM, Emran KM, Messali M (2019) Improved protection performance of modified sol-gel coatings with pyridinium-based ionic liquid for cast iron corrosion in 0.5 M HCl solution. Prog Org Coat 130:226–234. https://doi.org/10.1016/j.porgcoat.2019.02.002

    Article  CAS  Google Scholar 

  55. Abbout S, Hsissou R, Chebabe D, Erramli H, Hajjaji N (2021) Investigation of the anti-corrosion properties of galactomannan as additive in epoxy coatings for CS: rheological and electrochemical study. Inorg Chem Commun 134:108971. https://doi.org/10.1016/j.inoche.2021.108971

    Article  CAS  Google Scholar 

  56. Dagdag O, El Harfi A, Cherkaoui O, Safi Z, Wazzan N, Guo L, Akpan ED, Verma C, Ebenso EE, Jalgham RTT (2019) Rheological, electrochemical, surface, DFT and molecular dynamics simulation studies on the anticorrosive properties of new epoxy monomer compound for steel in 1 M HCl solution. RSC Adv 9:4454–4462. https://doi.org/10.1039/C8RA09446B

    Article  CAS  Google Scholar 

  57. Gece G, Bilgiç S (2009) Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media. Corros Sci 51:1876–1878. https://doi.org/10.1016/j.corsci.2009.04.003

    Article  CAS  Google Scholar 

  58. Şahin M, Gece G, Karcı F, Bilgiç S (2008) Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low CS in 35% NaCl medium. J Appl Electrochem 38:809–815. https://doi.org/10.1007/s10800-008-9517-3

    Article  CAS  Google Scholar 

  59. Quraishi MA, Ansari KR, Chauhan DS, Umoren SA, Mazumder MAJ (2020) Vanillin modified chitosan as a new bio-inspired corrosion inhibitor for CS in oil-well acidizing relevant to petroleum industry. Cellulose 27:6425–6443. https://doi.org/10.1007/s10570-020-03239-x

    Article  CAS  Google Scholar 

  60. Quraishi MA (2003) Corrosion inhibition by fatty acid triazoles for CS in formic acid. J Appl Electrochem 33:233–238. https://doi.org/10.1023/A:1024106123577

    Article  CAS  Google Scholar 

  61. Hu S-Q, Hu J-C, Fan C-C, Mi S-Q, Zhang J, Guo W-Y (2010) Corrosion inhibition of Q235 steel by a novel imidazoline compound under H2S and CO2 coexistence. Acta Phys-Chim Sin 26(8):2163–2170

    Article  CAS  Google Scholar 

  62. Lide, DR, CRC handbook of chemistry and physics 88th edition. The Chemical Rubber Company, 2008.

  63. Yadav M, Sinha RR, Kumar S, Sarkar TK (2015) Corrosion inhibition effect of spiropyrimidinethiones on CS in 15% HCl solution: insight from electrochemical and quantum studies. RSC Adv 5:70832–70848. https://doi.org/10.1039/C5RA14406J

    Article  CAS  Google Scholar 

  64. Tailhades J, Takizawa H, Gait MJ, Wellings DA, Wade JD, Aoki Y, Shabanpoor F (2017) Solid-phase synthesis of difficult purine-rich PNAs through selective Hmb incorporation: application to the total synthesis of cell penetrating peptide-PNAs. Front Chem 5:81. https://doi.org/10.3389/fchem.2017.00081

    Article  CAS  Google Scholar 

  65. Berisha A (2021) Ab inito exploration of nanocars as potential corrosion inhibitors. Comput Theor Chem 1201:113258. https://doi.org/10.1016/j.comptc.2021.113258

    Article  CAS  Google Scholar 

  66. Berisha A, Combellas C, Kanoufi F, Pinson J, Podvorica FI (2011) Physisorption vs grafting of aryldiazonium salts onto iron: a corrosion study. Electrochim Acta 56:10762–10766. https://doi.org/10.1016/j.electacta.2011.01.049

    Article  CAS  Google Scholar 

  67. Dagdag O, El Harfi A, El Gana L, Safi Z, Guo L, Berisha A, Verma C, Ebenso EE, Wazzan N, El Gouri M (2021) Designing of phosphorous based highly functional dendrimeric macromolecular resin as an effective coating material for CS in NaCl: computational and experimental studies. J Appl Polym Sci 138:49673. https://doi.org/10.1002/app.49673

    Article  CAS  Google Scholar 

  68. Molhi A, Hsissou R, Damej M, Berisha A, Bamaarouf M (2021) Performance of two epoxy compounds against corrosion of C38 steel in 1 M HCl: electrochemical, thermodynamic and theoretical assessment. Int J Corros Scale Inhib. https://doi.org/10.1675/2305-6894-2021-10-2-21

    Article  Google Scholar 

  69. Alahiane M, Oukhrib R, Berisha A, Albrimi YA, Akbour RA, Oualid HA, Bourzi H, Assabbane A, Nahlé A, Hamdani M (2021) Electrochemical, thermodynamic and molecular dynamics studies of some benzoic acid derivatives on the corrosion inhibition of 316 stainless steel in HCl solutions. J Mol Liq 328:115413. https://doi.org/10.1016/j.molliq.2021.115413

    Article  CAS  Google Scholar 

  70. Ouass A, Galai M, Ouakki M, Ech-Chihbi E, Kadiri L, Hsissou R, Essaadaoui Y, Berisha A, Cherkaoui M, Lebkiri A, Rifi EH (2021) Poly(sodium acrylate) and poly(acrylic acid sodium) as an eco-friendly corrosion inhibitor of CS in normal hydrochloric acid: experimental, spectroscopic and theoretical approach. J Appl Electrochem 51:1009–1032. https://doi.org/10.1007/s10800-021-01556-y

    Article  CAS  Google Scholar 

  71. Dagdag O, Hsissou R, El Harfi A, Safi Z, Berisha A, Verma C, Ebenso EE, Quraishi MA, Wazzan N, Jodeh S, El Gouri M (2020) Epoxy resins and their zinc composites as novel anti-corrosive materials for copper in 3% sodium chloride solution: experimental and computational studies. J Mol Liq 315:113757. https://doi.org/10.1016/j.molliq.2020.113757

    Article  CAS  Google Scholar 

  72. Hsissou R, Abbout S, Berisha A, Berradi M, Assouag M, Hajjaji N, Elharfi A (2019) Experimental, DFT and molecular dynamics simulation on the inhibition performance of the DGDCBA epoxy polymer against the corrosion of the E24 CS in 1.0 M HCl solution. J Mol Struct 1182:340–351. https://doi.org/10.1016/j.molstruc.2018.12.030

    Article  CAS  Google Scholar 

  73. Rbaa M, Dohare P, Berisha A, Dagdag O, Lakhrissi L, Galai M, Lakhrissi B, Touhami ME, Warad I, Zarrouk A (2020) New epoxy sugar based glucose derivatives as eco friendly corrosion inhibitors for the CS in 1.0 M HCl: experimental and theoretical investigations. J Alloys Compd 833:1949. https://doi.org/10.1016/j.jallcom.2020.154949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nuha Wazzan gratefully acknowledges King Abdulaziz University's High-Performance Computing Centre (Aziz Supercomputer) (http://hpc.kau.edu.sa) for assisting the calculations for the work of this paper. A generous allocation of computing time at the CCC of the UAM is also acknowledged.

Funding

The author received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Abbout.

Ethics declarations

Conflict of interest

We confirm that this work is not submitted in any journal and there is no conflict between authors. Thank you for your consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbout, S., Hsissou, R., Chebabe, D. et al. Investigation of Two Corrosion Inhibitors in Acidic Medium Using Weight Loss, Electrochemical Study, Surface Analysis, and Computational Calculation. J Bio Tribo Corros 8, 86 (2022). https://doi.org/10.1007/s40735-022-00684-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00684-y

Keywords

Navigation