Skip to main content
Log in

Review on Tribological and Mechanical Behavior in HVOF Thermal-sprayed Composite Coatings

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The engineering components used in various applications, such as aircraft, power generation, marine, chemical, and paper industries, perform under extreme environmental conditions. The major issues encountered during performance wear, corrosion, erosion, or combinations of these will reduce the components' service life. Thermal spray practice has emerged as one of the important deposition techniques to overcome those above concerns. The high-velocity oxy-fuel (HVOF) thermal spray technique is widely employed among several thermal spray techniques due to its low cost of development, greater performance, and high-density coating formation with less porosity. This article presents an insight into the HVOF spray technique, its benefits, and limitations, along with respect to various coating materials and applications. This article also discusses the HVOF spray technique's effect on mechanical, tribological, and microstructural characteristics through different coating parameters concerning material consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al Mahmud KA, Kalam MA, Masjuki HH, Mobarak HM, Zulkifli NW (2015) An updated overview of diamond-like carbon coating in tribology. Crit Rev Solid State Mater Sci 40(2):90–118

    Article  CAS  Google Scholar 

  2. Bueno AH, Solis J, Zhao H, Wang C, Simoes TA, Bryant M, Neville A (2018) Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry. Wear 15(394):60–70

    Article  Google Scholar 

  3. Wang B (1996) Erosion-corrosion of thermal sprayed coatings in FBC boilers. Wear 199(1):24–32

    Article  CAS  Google Scholar 

  4. Szymański K, Hernas A, Moskal G, Myalska H (2015) Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers: a review. Surf Coat Technol 25(268):153–164

    Article  Google Scholar 

  5. Kumar H, Chittosiya C, Shukla VN (2018) HVOF sprayed WC based cermet coating for mitigation of cavitation, erosion & abrasion in hydro turbine blade. Mater Today 5(2):6413–6420

    CAS  Google Scholar 

  6. Hou X, Gao L, Cui Z, Yin J (2018) Corrosion and protection of metal in the seawater desalination. In: IOP conference series: earth and environmental science, vol 108, no 2, IOP Publishing, p 022037

  7. Stokes J (2005) The theory and application of the HVOF thermal spray process. Dublin City University, Dublin

  8. Zheludkevich ML, Salvado IM, Ferreira MG (2005) Sol–gel coatings for corrosion protection of metals. J Mater Chem 15(48):5099–5111

    Article  CAS  Google Scholar 

  9. Bhushan B, Gupta BK. Handbook of tribology: materials, coatings, and surface treatments.

  10. Knotek O: Chapter 3: thermal spraying and detonation spray gun processes. In Handbook of hard coatings: deposition technologies, properties and applications. Ed. Bunshah, RF; Noyes Pub. Park Ridge

  11. Santa JF, Espitia LA, Blanco JA, Romo SA, Toro A (2009) Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267(1–4):160–167

    Article  CAS  Google Scholar 

  12. Keller S (1995) inventor; OerlikonMetco AG, assignee. Plasma spray apparatus. United States patent US 5,452,854

  13. Singh H, Sidhu BS, Puri D, Prakash S (2007) Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coatings: a review. Mater Corros 58(2):92–102

    Article  CAS  Google Scholar 

  14. Sobolev VV, Guilemany JM, Nutting J (2004) HVOF spraying. B0655, Maney, IOM3. 5

  15. Browning JA (1983) inventor; Browning Engineering Corp, assignee. Highly concentrated supersonic liquified material flame spray method and apparatus. United States patent US 4,416,421

  16. Helali MM, Looney L, Hashmi MS (1996) A technique of fabricating complex shaped thin-walled components in hard materials using a high velocity oxy-fuel thermal spraying process. Adv Powder Metall Particul Mater 5:18

    Google Scholar 

  17. Schroeder M, Unger R (1997) Thermal spray coatings replace hard chrome. Adv Mater Processes 152(2):19–21

    Google Scholar 

  18. Stokes J, Looney L (2001) HVOF system definition to maximise the thickness of formed components. Surf Coat Technol 148(1):18–24

    Article  CAS  Google Scholar 

  19. Roa KV (1986) Properties and characterisation of coatings made using Jet Kote thermal spray technique. In: Proceeding of the 11th international thermal spray conference, Montreal (pp 873–882)

  20. Helali MM, Hashmi MS (1992) A comparative study of plasma spraying and high velocity oxy-fuel (HVOF) thermal spraying. In: Proceeding of the 10th conference of the Irish manufacturing committee (IMC 10), Galway (pp 377–387)

  21. Jarosinski WJ, Gruninger MF, Londry CH (1993) Characterization of tungsten carbide cobalt powders and HVOF [high-velocity oxy-fuel] coatings. In: Thermal Spray Coat: Res., Design Appl., Proceeding of the National Spray Conference (pp 153–7)

  22. Parker D, Kutner G (1991) HVOF-spray technology poised for growth. Adv Mater Processes 139:68–72

    CAS  Google Scholar 

  23. METCO/ Perkin Elmer (1989) “Diamond Jet Process Manual”

  24. Moskowitz LN (1992) Application of HVOF spraying to solve corrosion problems in the petroleum industry. In: Proceeding of the International Thermal Sprayed Conference. ASM International pp 611–618

  25. Matsubara Y, Tomiguchi A (1992) Surface texture and adhesive strength of high velocity oxy-fuel sprayed coatings for rolls of steel mills. Thermal Spray 5:637–641

    Google Scholar 

  26. Fukumoto H (1995) The application of cermet coating on piston ring by HVOF. In: Proceedings 14th international thermal spray conference, Kobe. High Temperature Society of Japan. vol 21

  27. Parker DW (1994) HVOF moves into the industrial mainstream. Adv Mater Processes 146:31–35

    CAS  Google Scholar 

  28. Sobolev VV, Guilemany JM, Nutting J, Joshi S (2004) High velocity oxy-fuel spraying: theory, structure-property relationships and applications. Maney, London

    Google Scholar 

  29. Bolelli G, Lusvarghi L, Manfredini T, PighettiMantini F, Polini R, Turunen E, Varis T, Hannula SP (2007) Comparison between plasma-and HVOF-sprayed ceramic coatings: Part I: microstructure and mechanical properties. Int J Surf Sci Eng 1(1):38–61

    Article  CAS  Google Scholar 

  30. Bolelli G, Lusvarghi L, Manfredini T, PighettiMantini F, Turunen E, Varis T, Hannula SP (2007) Comparison between plasma-and HVOF-sprayed ceramic coatings: Part II: tribological behaviour. Int J Surf Sci Eng 1(1):62–79

    Article  CAS  Google Scholar 

  31. Azom (2000) Thermal spraying versus hard chrome plating, Mater. 32–6, pp 11–13

  32. Sahraoui T, Fenineche NE, Montavon G, Coddet C (2004) Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty). J Mater Process Technol 152(1):43–55

    Article  CAS  Google Scholar 

  33. Bonora RG, Voorwald HJ, Cioffi MO, Junior GS, Santos LF (2010) Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Eng 2(1):1617–1623

    Article  Google Scholar 

  34. Picas JA, Forn A, Matthäus G (2006) HVOF coatings as an alternative to hard chrome for pistons and valves. Wear 261(5–6):477–484

    Article  CAS  Google Scholar 

  35. Rajendran R (2012) Gas turbine coatings–an overview. Eng Fail Anal 1(26):355–369

    Article  Google Scholar 

  36. Goyal DK, Singh H, Kumar H, Sahni V (2014) Erosive Wear Study of HVOF Spray Cr3C2–NiCr Coated CA6NM Turbine Steel. J Tribol 136(4): 041602

    Article  Google Scholar 

  37. Berger JE, Schulz R, Savoie S, Gallego J, Kiminami CS, Bolfarini C, Botta WJ (2017) Wear and corrosion properties of HVOF coatings from Superduplex alloy modified with addition of boron. Surf Coat Technol 15(309):911–919

    Article  Google Scholar 

  38. Neville A, Perry JM, Hodgkiess T, Chua HP. Wrought and high-velocity oxy fuel sprayed Inconel 625—examination of corrosion aspects. In: Proceedings of the institution of mechanical engineers: part L. Journal of Materials: Design and Applications

  39. Thakur L, Arora N (2013) A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings. J Mech Sci Technol 27(5):1461–1467

    Article  Google Scholar 

  40. Singh H, Grewal MS, Sekhon HS, Rao RG (2008) Sliding wear performance of high-velocity oxy-fuel spray Al2O3/TiO2 and Cr2O3 coatings. ProcInst Mech Eng Part J 222(4):601–610

    Article  CAS  Google Scholar 

  41. Rakhes M, Koroleva E, Liu Z (2011) Improvement of corrosion performance of HVOF MMC coatings by laser surface treatment. Surf Eng 27(10):729–733

    Article  CAS  Google Scholar 

  42. Ding ZX, Wei CH, Qun WA (2011) Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF. Trans Nonferrous Metals Soc China 21(10):2231–2236

    Article  CAS  Google Scholar 

  43. Zhang H, Dong X, Chen S (2017) Solid particle erosion-wear behaviour of Cr3C2–NiCr coating on Ni-based superalloy. Adv Mech Eng 9(3):1687814017694580

    Article  CAS  Google Scholar 

  44. Chen SF, Liu SY, Wang Y, Sun XG, Zou ZW, Li XW, Wang CH (2014) Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth. J Therm Spray Technol 23(5):809–817

    Article  CAS  Google Scholar 

  45. Nahvi SM, Jafari M (2016) Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings. Surf Coat Technol 25(286):95–102

    Article  Google Scholar 

  46. Zhong Z (2001) Machining of thermally sprayed WC-Co coatings. Mater Manuf Process 16(1):103–112

    Article  CAS  Google Scholar 

  47. Hwang SY, Seong BG (1995) Characterization of build-up resistant plasma sprayed coatings. for hearth roll, In: Ohmori A (ed.). Proceedings 14th international thermal spray conference, Kobe. High Temperature Society of Japan. p 59

  48. Tucker RC, Ashari AA. (1998) The structure property relationship of erosion resistant thermal spray coatings. In: Proceeding 15th ITSC, Nice pp 259–62

  49. Huang CB, Du LZ, Zhang WG (2011) Microstructure, mechanical and tribological characteristics of plasma, detonation gun and HVOF sprayed NiCr/Cr3C2–BaF2: CaF2 coatings. Surf Eng 27(10):762–769

    Article  Google Scholar 

  50. Karaoglanli AC, Turk A, Ozdemir I (2016) Effect of sintering on mechanical properties of cold sprayed thermal barrier coatings. Surf Eng 32(9):686–690

    Article  CAS  Google Scholar 

  51. Gassot H, Junquera T, Ji V, Jeandin M, Guipont V, Coddet C, Verdy C, Grandsire L (2001) Comparative study of mechanical properties and residual stress distributions of copper coatings obtained by different thermal spray processes. Surf Eng 17(4):317–322

    Article  CAS  Google Scholar 

  52. Hamatani H, Ichiyama Y, Kobayashi J (2002) Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide. Sci Technol Adv Mater 3(4):319

    Article  CAS  Google Scholar 

  53. Garrido MA, Sirvent P, Poza P (2018) Evaluation of mechanical properties of Ti6Al4V cold sprayed coatings. Surf Eng 34(5):399–406

    Article  CAS  Google Scholar 

  54. Santana YY, Barbera-Sosa LJ, Caro J, Puchi-Cabrera ES, Staia MH (2008) Mechanical properties and microstructure of WC–10Co–4Cr and WC–12Co thermal spray coatings deposited by HVOF. Surf Eng 24(5):374–382

    Article  CAS  Google Scholar 

  55. Movahedi B (2013) Fracture toughness and wear behavior of NiAl-based nanocomposite HVOF coatings. Surf Coat Technol 25(235):212–219

    Article  Google Scholar 

  56. Ma N, Guo L, Cheng Z, Wu H, Ye F, Zhang K (2014) Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure. Appl Surf Sci 30(320):364–371

    Article  Google Scholar 

  57. Mi P, Wang T, Ye F (2017) Influences of the compositions and mechanical properties of HVOF sprayed bimodal WC-Co coating on its high temperature wear performance. Int J Refract Metals Hard Mater 69:158–163

    Article  CAS  Google Scholar 

  58. Koutsomichalis A, Vardavoulias M, Vaxevanidis N (2017) HVOF sprayed WC-CoCr coatings on aluminum: tensile and tribological properties. In: IOP conference series: materials science and engineering vol 174, no 1, IOP Publishing, p 012062

  59. Singh PK, Mishra SB (2018) Erosion wear characteristics of HVOF Sprayed WC-Co-Cr and CoNiCrAlY coatings on IS-2062 structural steel. Mater Res Express. 5(9):095508

    Article  Google Scholar 

  60. García-Rodríguez S, Torres B, López AJ, Otero E, Rams J (2019) Characterization and mechanical properties of stainless steel coatings deposited by HVOF on ZE41 magnesium alloy. Surf Coat Technol 15(359):73–84

    Article  Google Scholar 

  61. Yang Q, Senda T, Ohmori A (2003) Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC–12% Co coatings. Wear 254(1–2):23–34

    Article  CAS  Google Scholar 

  62. Wang YY, Li CJ, Ohmori A (2006) Examination of factors influencing the bond strength of high velocity oxy-fuel sprayed coatings. Surf Coat Technol 200(9):2923–2928

    Article  CAS  Google Scholar 

  63. Lawn B, Wilshaw TR (1993) Fracture of brittle solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  64. Berndt CC, McPherson R (1981) Fracture mechanics approach to the adhesion of flame and plasma sprayed coatings. Trans Inst Eng Austral Mech Eng 1:53–58

    Google Scholar 

  65. Heintze GN, McPherson R (1988) Fracture toughness of plasma-sprayed zirconia coatings. Surf Coat Technol 34(1):15–23

    Article  CAS  Google Scholar 

  66. Lima CR, da ExaltacaãoTrevisan R (1999) Temperature measurements and adhesion properties of plasma sprayed thermal barrier coatings. J Therm Spray Technol 8(2):323–327

    Article  CAS  Google Scholar 

  67. Araujo P, Chicot D, Staia M, Lesage J (2005) Residual stresses and adhesion of thermal spray coatings. Surf Eng 21(1):35–40

    Article  CAS  Google Scholar 

  68. Gil LE, Staia MH (2002) Effects of HVOF parameters on adhesion and microstructure of thermal sprayed NiWCrBSi coatings. Surf Eng 18(4):309–315

    Article  CAS  Google Scholar 

  69. Boudi AA, Hashmi MS, Yilbas BS (2004) HVOF coating of Inconel 625 onto stainless and carbon steel surfaces: corrosion and bond testing. J Mater Process Technol 30(155):2051–2055

    Article  Google Scholar 

  70. Chicot D, Marot G, Araujo P, Horny N, Tricoteaux A, Staia MH, Lesage J (2006) Effect of some thermal treatments on interface adhesion toughness of various thick thermal spray coatings. Surf Eng 22(5):390–398

    Article  CAS  Google Scholar 

  71. Lima CR, Guilemany JM (2007) Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf Coat Technol 201(8):4694–4701

    Article  CAS  Google Scholar 

  72. Karaoglanli AC, Dikici H, Kucuk Y (2013) Effects of heat treatment on adhesion strength of thermal barrier coating systems. Eng Fail Anal 1(32):16–22

    Article  Google Scholar 

  73. Gil L, Staia MH (2002) Influence of HVOF parameters on the corrosion resistance of NiWCrBSi coatings. Thin Solid Films 2(420):446–454

    Article  Google Scholar 

  74. Hasan M, Stokes J, Looney L, Hashmi MS (2008) Effect of spray parameters on residual stress build-up of HVOF sprayed aluminium/tool-steel functionally graded coatings. Surf Coat Technol 202(16):4006–4010

    Article  CAS  Google Scholar 

  75. Houdková Š, Zahálka F, Kašparová M (2009) The influence of the spraying angle on properties of thermally sprayed HVOF cermet coatings. WIT Trans Eng Sci 20(62):59–69

    Article  Google Scholar 

  76. Picas JA, Punset M, Baile MT, Martín E, Forn A (2011) Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC-CoCr coatings. Surf Coat Technol 25(205):S364–S368

    Article  Google Scholar 

  77. Picas JA, Rupérez E, Punset M, Forn A (2013) Influence of HVOF spraying parameters on the corrosion resistance of WC–CoCr coatings in strong acidic environment. Surf Coat Technol 25(225):47–57

    Article  Google Scholar 

  78. Nourouzi S, Azizpour MJ, Salimijazi HR (2014) Parametric study of residual stresses in HVOF thermally sprayed WC–12Co coatings. Mater Manuf Process 29(9):1117–1125

    Article  CAS  Google Scholar 

  79. Zhao L, Maurer M, Fischer F, Lugscheider E (2004) Study of HVOF spraying of WC–CoCr using on-line particle monitoring. Surf Coat Technol 185(2–3):160–165

    Article  CAS  Google Scholar 

  80. Katranidis V, Gu S, Reina TR, Alpay E, Allcock B, Kamnis S (2017) Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part B: influence of kinematic spray parameters on microstructure, phase composition and decarburization of the coatings. Surf Coat Technol 15(328):499–512

    Article  Google Scholar 

  81. Pukasiewicz AG, De Boer HE, Sucharski GB, Vaz RF, Procopiak LA (2017) The influence of HVOF spraying parameters on the microstructure, residual stress and cavitation resistance of FeMnCrSi coatings. Surf Coat Technol 25(327):158–166

    Article  Google Scholar 

  82. Murugan K, Ragupathy A, Balasubramanian V, Sridhar K (2014) Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings. Surf Coat Technol 25(247):90–102

    Article  Google Scholar 

  83. Singh L, Chawla V, Grewal JS (2012) A review on detonation gun sprayed coatings. J Miner Mater Charact Eng 11(03):243

    Google Scholar 

  84. Żórawski W, Skrzypek SJ (2013) Tribological properties of plasma and HVOF-sprayed NiCrBSi–Fe2O3 composite coatings. Surf Coat Technol 15(220):282–289

    Article  Google Scholar 

  85. Avery HS (1961) The measurement of wear resistance. Wear 4(6):427–449

    Article  Google Scholar 

  86. Al-Hamed AA, Benyounis KY, Al-Fadhli HY, Yilbas BS, Hashmi MS, Stokes J (2016) Enhancement of conventional WC-Co and Inconel 625 HVOF thermal spray coatings by the addition of nanostructured WC-Co for wear/corrosion applications in the oil/gas industry. Adv Mater Process Technol 2(1):93–102

    Google Scholar 

  87. Li CJ, Wang YY, Yang GJ, Ohmori A, Khor KA (2004) Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings. Mater Sci Technol 20(9):1087–1096

    Article  CAS  Google Scholar 

  88. Yin B, Zhou HD, Yi DL, Chen JM, Yan FY (2010) Microsliding wear behaviour of HVOF sprayed conventional and nanostructured WC–12Co coatings at elevated temperatures. Surf Eng 26(6):469–477

    Article  Google Scholar 

  89. Khan TI, Saha G, Glenesk LB (2010) Nanostructured composite coatings for oil sand’s applications. Surf Eng 26(7):540–545

    Article  CAS  Google Scholar 

  90. Saha GC, Khan TI, Glenesk LB (2009) Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry. J Nanosci Nanotechnol 9(7):4316–4323

    Article  CAS  Google Scholar 

  91. Chen H, Gou GQ, Tu MJ, Liu Y (2009) Structure and wear behaviour of nanostructured and ultrafine HVOF spraying WC–17Co coatings. Surf Eng 25(7):502–506

    Article  CAS  Google Scholar 

  92. Tian HL, Wei SC, Chen YX, Tong H, Liu Y, Xu BS (2013) Surface remelting treated high velocity arc sprayed FeNiCrAlBRE coating by tungsten inert gas. Phys Procedia 1(50):322–327

    Article  Google Scholar 

  93. Mahmud TA, Saha GC, Khan TI (2014) Mechanical property changes in HVOF sprayed nano-structured WC-17wt.% Ni (80/20) Cr coating with varying substrate roughness. In: IOP conference series: materials science and engineering, vol 60, no 1, IOP Publishing, p 012007

  94. Hou GL, An YL, Zhao XQ, Chen J, Chen JM, Zhou HD, Liu G (2012) Effect of heat treatment on wear behaviour of WC–(W, Cr) 2C–Ni coating. Surf Eng 28(10):786–790

    Article  CAS  Google Scholar 

  95. Tianyuan S, Dejun K (2017) Microstructures and high-temperature friction-wear performance of laser-remelted WC-12Co coatings by HVOF. Tribol Trans 60(5):781–788

    Article  CAS  Google Scholar 

  96. Zoei MS, Sadeghi MH, Salehi M (2016) Effect of grinding parameters on the wear resistance and residual stress of HVOF-deposited WC–10Co–4Cr coating. Surf Coat Technol 15(307):886–891

    Article  Google Scholar 

  97. Matikainen V, Bolelli G, Koivuluoto H, Sassatelli P, Lusvarghi L, Vuoristo P (2017) Sliding wear behaviour of HVOF and HVAF sprayed Cr3C2-based coatings. Wear 15(388):57–71

    Article  Google Scholar 

  98. Mindivan H (2018) Investigating tribological characteristics of HVOF sprayed AISI 316 stainless steel coating by pulsed plasma nitriding. In: IOP conference series: materials science and engineering, vol 295, no 1, IOP Publishing, p 012033

  99. Wang T, Ye F (2018) The elevated-temperature wear behavior evolution of HVOF sprayed tungsten carbide coatings: respond to heat treatment. Int J Refract Metal Hard Mater 1(71):92–100

    Article  Google Scholar 

  100. Prasad CD, Joladarashi S, Ramesh MR, Srinath MS, Channabasappa BH (2018) Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating. Mater Res Express 5(8):086519

    Article  Google Scholar 

  101. Ben Mahmud T, Khan TI, Farrokhzad MA (2017) Heat treatment effect on wear behaviour of HVOF-sprayed near-nanostructured coatings. Surf Eng 33(1):72–82

    Article  CAS  Google Scholar 

  102. Espallargas N, Berget J, Guilemany JM, Benedetti AV, Suegama PH (2008) Cr3C2–NiCr and WC–Ni thermal spray coatings as alternatives to hard chromium for erosion–corrosion resistance. Surf Coat Technol 202(8):1405–1417

    Article  CAS  Google Scholar 

  103. Matthews S, James B, Hyland M (2009) The role of microstructure in the mechanism of high velocity erosion of Cr3C2–NiCr thermal spray coatings: part 1: as-sprayed coatings. Surf Coat Technol 203(8):1086–1093

    Article  CAS  Google Scholar 

  104. Wang Y, Yang Y, Yan MF (2007) Microstructures, hardness and erosion behavior of thermal sprayed and heat treated NiAl coatings with different ceria. Wear 263(1–6):371–378

    Article  CAS  Google Scholar 

  105. Mahesh RA, Jayaganthan R, Prakash S (2008) Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900 C. Mater Chem Phys 111(2–3):524–533

    Article  CAS  Google Scholar 

  106. Murthy JK, Prasad KS, Gopinath K, Venkataraman B (2010) Characterisation of HVOF sprayed Cr3C2-50 (Ni20Cr) coating and the influence of binder properties on solid particle erosion behaviour. Surf Coat Technol 204(24):3975–3985

    Article  CAS  Google Scholar 

  107. Mohammadi M, Javadpour S, Jahromi SA, Shirvani K, Kobayashi A (2012) Characterization and hot corrosion performance of LVPS and HVOF-CoNiCrAlYSi coatings. Vacuum 86(10):1458–1464

    Article  CAS  Google Scholar 

  108. Manjunatha M, Kulkarni RS, Krishna M (2014) Investigation of HVOF thermal sprayed Cr3C2-NiCr cermet carbide coatings on erosive performance of AISI 316 molybdenum steel. Procedia Mater Sci 1(5):622–629

    Article  Google Scholar 

  109. Ramesh MR, Prakash S, Nath SK, Sapra PK, Venkataraman B (2010) Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings. Wear 269(3–4):197–205

    Article  CAS  Google Scholar 

  110. Baiamonte L, Marra F, Gazzola S, Giovanetto P, Bartuli C, Valente T, Pulci G (2016) Thermal sprayed coatings for hot corrosion protection of exhaust valves in naval diesel engines. Surf Coat Technol 15(295):78–87

    Article  Google Scholar 

  111. Vinod K, Porwal RK (2018) Effect of coating on erosion wear: an experimental investigation. In: IOP conference series: materials science and engineering, vol 402, no. 1, IOP Publishing p 012117

  112. Zhou W, Zhou K, Li Y, Deng C, Zeng K (2017) High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl Surf Sci 416:33–44

    Article  CAS  Google Scholar 

  113. Liu Y, Hang Z, Xi N, Chen H, Ma C, Wu X (2018) Erosion-corrosion behavior of HVOF WC-Co coating in Cl− and SO42− containing solutions. Appl Surf Sci 15(431):55–59

    Article  Google Scholar 

  114. Wang Q, Luo S, Wang S, Wang H, Ramachandran CS (2019) Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement. Int J Refract Metal Hard Mater 1(81):242–252

    Article  Google Scholar 

  115. Sharma A, Goel SK (2016) Erosion behaviour of WC–10Co–4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying. Appl Surf Sci 1(370):418–426

    Google Scholar 

Download references

Funding

This article did not receive any financial assistance from the government or private organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Pradeep.

Ethics declarations

Conflict of interests

The authors state that they have no known competing financial interests or personal ties that may seem to have influenced the work described in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, D.G., Venkatesh, C.V. & Nithin, H.S. Review on Tribological and Mechanical Behavior in HVOF Thermal-sprayed Composite Coatings. J Bio Tribo Corros 8, 30 (2022). https://doi.org/10.1007/s40735-022-00631-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-022-00631-x

Keywords

Navigation