Skip to main content
Log in

Plastic Deformation Effect on Wear and Corrosion resistance of Super Martensitic Stainless Steel

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The microstructure and the mechanical properties of a super martensitic stainless steel (SMSS) were investigated in this study. Test specimens were taken from seamless tube generally used in oil and gas industries. The specimens were plastically deformed by tension from its as-received state to different levels of elongation at 2%, 10%, and 15%, respectively. The focus was to study the influence of plastic deformation on the tribological behavior against alumina balls in dry conditions and the corrosion resistance in 3.5% NaCl solution. Analysis results showed an abrasive wear as the main wear mechanism. Plastic deformation prior to sliding wear test increases wear resistance as the deformation rate increases. Based on the electrochemical experiments, all of the specimens showed an increase in their corrosion resistance i.e., the corrosion potential Ecorr (vs. Ag/AgCl) tends to move toward more noble values with respect to the initial potential. The greatest polarization resistance was displayed by the specimen with 10% of deformation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ceschini L, Chiavari C, Lanzoni E, Martini C (2012) Low-temperature carburised AISI 316L austenitic stainless steel: wear and corrosion behaviour. Mater Des 38:154–160. https://doi.org/10.1016/j.matdes.2012.02.019

    Article  CAS  Google Scholar 

  2. Liu Y, Zhu D, Pierre D, Gilbert JL (2019) Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: potential and cycles to initiation. Acta Biomater 97:565–577. https://doi.org/10.1016/j.actbio.2019.07.051

    Article  CAS  Google Scholar 

  3. Turnbull A, Griffiths A (2003) Corrosion and cracking of weldable 13 wt-%Cr martensitic stainless steels for application in the oil and gas industry. Corros Eng Sci Technol 38(1):21–50. https://doi.org/10.1179/147842203225001432

    Article  CAS  Google Scholar 

  4. Ye D, Li J, Jiang W, Su J, Zhao K (2012) Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel. Mater Des 41:16–22. https://doi.org/10.1016/j.matdes.2012.04.036

    Article  CAS  Google Scholar 

  5. Hill R, Perez AL (2017) New steels and corrosion-resistant alloys. In: El-Sherik AM (ed) Trends in oil and gas corrosion research and technologies: production and transmission, 1st edn. Woodhead Publishing, pp 613–626

  6. Mabruri E, Anwar MS, Prifiharni S, Romijarso TB, Adjiantoro B (2016) Tensile properties of the modified 13Cr martensitic stainless steels. AIP Conf Proc 1725(1):020039-1-020039–5. https://doi.org/10.1063/1.4945493

    Article  Google Scholar 

  7. Rodrigues CAD, Lorenzo PLD, Sokolowski A, Barbosa CA, Rollo JMDA (2007) Titanium and molybdenum content in supermartensitic stainless steel. Mater Sci Eng A 461:149–152. https://doi.org/10.1016/j.msea.2007.01.016

    Article  CAS  Google Scholar 

  8. Liu YR, Ye D, Yong QL, Su J, Zhao KY, Jiang W (2011) Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. J Iron Steel Res Int 18(11):60–66. https://doi.org/10.1016/S1006-706X(11)60118-0

    Article  CAS  Google Scholar 

  9. Ma X, Zhou C, Wang L, Liu C, Subramanian S, de Oliveira MP (2013) Role of Nb in 13Cr super-martensitic stainless steel. Rem Rev Esc Minas 66(2):179–185. https://doi.org/10.1590/s0370-44672013000200007

    Article  Google Scholar 

  10. Zepon G, Kiminami CS, Filho WJB, Bolfarini C (2013) Microstructure and wear resistance of spray-formed supermartensitic stainless steel. Mater Res 16(3):642–646. https://doi.org/10.1590/S1516-14392013005000026

    Article  CAS  Google Scholar 

  11. Barbosa C, Abud I (2013) Recent developments on martensitic stainless steels for oil and gas production. Recent Patents Corros Sci 3(1):27–38. https://doi.org/10.2174/22106839112029990004

    Article  Google Scholar 

  12. Sun Y, Bell T, Wood G (1994) Wear behaviour of plasma-nitrided martensitic stainless steel. Wear 178(1–2):131–138. https://doi.org/10.1016/0043-1648(94)90138-4

    Article  CAS  Google Scholar 

  13. Xi YT, Liu DX, Han D (2008) Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature. Surf Coatings Technol 202(12):2577–2583. https://doi.org/10.1016/j.surfcoat.2007.09.036

    Article  CAS  Google Scholar 

  14. Beliardouh NE, Tlili S, Oulabbas A, Ramoul CE, Meddah S, Kaleli H (2021) Investigation on dry sliding wear performance and corrosion resistance of 13Cr5Ni2Mo supermartensitic stainless steel. Tribol Ind 43(1):107–116. https://doi.org/10.24874/ti.970.09.20.11

    Article  Google Scholar 

  15. Ramoul C, Beliardouh NE, Bahi R, Nouveau C, Djahoudi A, Walock MJ (2019) Surface performances of PVD ZrN coatings in biological environments. Tribol Mater Surfaces Interfaces 13(1):12–19. https://doi.org/10.1080/17515831.2018.1553820

    Article  CAS  Google Scholar 

  16. Tlili S, Beliardouh NE, Ramoul CE, Bahi R, Abdullah OI, Kaleli H, Samad MA (2018) Thermal treatment effect on tribological and corrosion performances of 13Cr5Ni2Mo super-martensitic stainless steel. Tribol Ind 40(3):433–439. https://doi.org/10.24874/ti.2018.40.03.09

    Article  Google Scholar 

  17. Oliveira MP, Calderón-Hernández JW, Magnabosco R, Hincapie-Ladino D, Alonso-Falleiros N (2017) Effect of niobium on phase transformations, mechanical properties and corrosion of supermartensitic stainless steel. J Mater Eng Perform 26(4):1664–1672. https://doi.org/10.1007/s11665-017-2610-1

    Article  CAS  Google Scholar 

  18. Niessen F (2018) Austenite reversion in low-carbon martensitic stainless steels–a CALPHAD-assisted review. Mater Sci Technol 34(12):1401–1414. https://doi.org/10.1080/02670836.2018.1449179

    Article  CAS  Google Scholar 

  19. Lacombe P, Baroux B, Béranger G (1990) Les aciers inoxydables. Les Ulis, Paris

    Google Scholar 

  20. Rodrigues CAD, Bandeira RM, Duarte BB, Tremiliosi-Filho G, Jorge AM (2016) Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel. Mater Sci Eng A 650:75–83. https://doi.org/10.1016/j.msea.2015.10.013

    Article  CAS  Google Scholar 

  21. Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater Sci Eng A 539:271–279. https://doi.org/10.1016/j.msea.2012.01.093

    Article  CAS  Google Scholar 

  22. Kang J, Li J, Zhao KY, Bai X, Yong QL, Su J (2015) Passivation behaviors of super martensitic stainless steel in weak acidic and weak alkaline NaCl solutions. J Iron Steel Res Int 22(12):1156–1163. https://doi.org/10.1016/S1006-706X(15)30127-8

    Article  Google Scholar 

  23. Hamu GB, Eliezer D, Wagner L (2009) The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J Alloys Compd 468(1–2):222–229. https://doi.org/10.1016/j.jallcom.2008.01.084

    Article  CAS  Google Scholar 

  24. Tiamiyu AA, Eduok U, Odeshi AG, Szpunar JA (2019) Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel. Mater Sci Eng A 745:1–9. https://doi.org/10.1016/j.msea.2018.12.093

    Article  CAS  Google Scholar 

  25. Miyamoto H (2016) Corrosion of ultrafine grained materials by severe plastic deformation, an overview. Mater Trans 57(5):559–572. https://doi.org/10.2320/matertrans.M2015452

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Directorate-General for Scientific Research and Technological Development (DGRSDT) at the Algerian Ministry of Higher Education and Scientific Research (MESRS) for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Ramoul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramoul, C.E., Ghelloudj, O., Gharbi, A. et al. Plastic Deformation Effect on Wear and Corrosion resistance of Super Martensitic Stainless Steel. J Bio Tribo Corros 7, 114 (2021). https://doi.org/10.1007/s40735-021-00553-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00553-0

Keywords

Navigation