Skip to main content
Log in

Effect of Strain Hardening on Wear and Corrosion Resistance of 316L Austenitic Stainless Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The wear and corrosion resistance of 316L austenitic stainless steel after strain hardening were studied. 316L austenitic stainless steel was composed of a large amount of austenite and a small fraction of martensite. After strain hardening at room temperature, the contents of phases were not changed basically. With the increase of pre-strain deformation, the microhardness of the surface and cross-section slightly increased, and the microhardness of the sample with pre-strain deformation of 20% was the largest. When the pre-strain deformation was greater than 5%, the surface microhardness was greater than the cross-sectional microhardness. The dynamic average friction coefficients of the stainless steel after pre-strain deformation of 0%, 5%, 10%, and 20% were 0.67, 0.57, 0.2, and 0.12, respectively. The friction coefficient of the samples gradually decreased with the increase of strain hardening. The wear resistance of 316L stainless steel was improved after pre-strain deformation. The steel with pre-strain deformation of 20% had a small abrasive scratch depth and low friction coefficient, which exhibited good wear resistance. The corrosion resistance of the samples after strain hardening deteriorated for the initial state without immersion due to the existence of defects. The corrosion resistance of the sample with pre-strain deformation of 5% after soaking for 3 days was the best, compared with the other as-strained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R., 2009, 65, p 39–104. https://doi.org/10.1016/j.mser.2009.03.001

    Article  CAS  Google Scholar 

  2. J. Zheng, A. Guo, C. Miao et al., Cold Stretching of Cryogenic Pressure Vessels from Austenitic Stainless Steels, Asme Pressure Vessels & Piping Conf., 2011, 1, p 693–698. https://doi.org/10.1115/PVP2011-57331

    Article  Google Scholar 

  3. H. Yu and X.D. Chen, Study and Application on Mechanical Behavior of Austenitic Stainless Steels Based on Cold Stretching Technology, China Mech. Eng., 2011, 22, p 2633–2637. https://doi.org/10.1016/S1872-5805(11)60064-4

    Article  CAS  Google Scholar 

  4. W.S. Lee, C.F. Lin, T.H. Chen et al., High Temperature Microstructural Evolution of 304L Stainless Steel as Function of Pre-Strain and Strain Rate, Mater. Sci. Eng. A., 2010, 527, p 3127–3137. https://doi.org/10.1016/j.msea.2010.02.007

    Article  CAS  Google Scholar 

  5. N.L. Parthasarathi and M. Duraiselvam, Improvement of High Temperature Wear Resistance of AISI 316 ASS Through NiCrBSiCFe Plasma Spray Coating, J. Miner. Mater. Character. Eng., 2010, 9, p 653–670. https://doi.org/10.4236/jmmce.2010.97047

    Article  Google Scholar 

  6. M. Hua, X.C. Wei and J. Li, Friction and Wear Behavior of SUS 304 Austenitic Stainless Steel Against Al2O3 Ceramic Ball Under Relative High Load, Wear, 2008, 265, p 799–810. https://doi.org/10.1016/j.wear.2008.01.017

    Article  CAS  Google Scholar 

  7. Z.Y. Li, C. Qiu, C.B. Liu et al., The Mechanoelectrochemical Effect on the Electrochemical Corrosion of Austenitic Stainless Steel, J. Mater. Res. Technol., 2023, 24, p 1203–1215. https://doi.org/10.1016/j.jmrt.2023.03.030

    Article  CAS  Google Scholar 

  8. S. Tokita, K. Kadoi, S. Aoki et al., Relationship Between the Microstructure and Local Corrosion Properties of Weld Metal in Austenitic Stainless Steels, Corros. Sci., 2020, 175, p 108867. https://doi.org/10.1016/j.corsci.2020.108867

    Article  CAS  Google Scholar 

  9. S.M. Kumar, A.R. Kannan, R. Pramod et al., Microstructure and High Temperature Performance of 321 SS Wall Manufactured Through Wire-Arc Additive Manufacturing, Mater. Lett., 2022, 314, p 131913. https://doi.org/10.1016/j.matlet.2022.131913

    Article  CAS  Google Scholar 

  10. D.X. Wen, P. Long, J.J. Li et al., Effects of Linear Heat Input on Microstructure and Corrosion Behavior of an Austenitic Stainless Steel Processed by Wire Arc Additive Manufacturing, Vacuum, 2020, 173, p 109131. https://doi.org/10.1016/j.vacuum.2019.109131

    Article  CAS  Google Scholar 

  11. Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1, p 131–136. https://doi.org/10.1179/sur.1985.1.2.131

    Article  Google Scholar 

  12. S. Picard, J.B. Memet, R. Sabot et al., Corrosion Behaviour, Microhardness and Surface Characterisation of Low Energy, High Current ion Implanted Austenitic Stainless Steel, Mater. Sci. Eng. A., 2001, 303, p 163–172. https://doi.org/10.1016/S0921-5093(00)01841-4

    Article  Google Scholar 

  13. M. Lindroos, M. Apostol, V. Heinoet et al., The Deformation, Strain Hardening, and Wear Behavior of Chromium-Alloyed Hadfield Steel in Abrasive and Impact Conditions, Toxicol. Lett., 2015, 57, p 24. https://doi.org/10.1007/s11249-015-0477-6

    Article  CAS  Google Scholar 

  14. P.L. Ko, G. Knowles and M.C. Taponat, Friction Characteristics and the Wear Process of Metal Pairs in Sliding Contacts—with Applications to Modelling Wear of Power Plant Components, Wear, 1997, 213, p 148–158. https://doi.org/10.1016/S0043-1648(97)00169-5

    Article  CAS  Google Scholar 

  15. X.B. Xu, Z. Ling, X. Wu et al., Martensitic Transformation and Work Hardening of Metastable Austenite Induced by Abrasion in Austenitic Fe-C-Cr-Mn-B Alloy - a TEM Study, Mater. Sci. Technol., 2002, 18, p 1561–1564. https://doi.org/10.1179/026708302225007466

    Article  CAS  Google Scholar 

  16. S. Ningshen and U. Kamachi Mudali, Pitting and Intergranular Corrosion Resistance of AISI Type 301LN Stainless Steels, J. Mater. Eng. Perform., 2010, 19, p 274–281. https://doi.org/10.1007/s11665-009-9441-7

    Article  CAS  Google Scholar 

  17. G. Suresh, P.K. Parida, S. Bandiet et al., Effect of Carbon Content on the Low Temperature Sensitization of 304L SS and its Corrosion Resistance in Simulated Ground Water, Mater. Chem. Phys., 2019, 226, p 184–194. https://doi.org/10.1016/j.matchemphys.2019.01.019

    Article  CAS  Google Scholar 

  18. V. Kain, S.S. Shinde and H.S. Gadiyar, Mechanism of Improved Corrosion Resistance of Type 304L Stainless Steel, Nitric Acid Grade, in Nitric Acid Environments, J. Mater. Eng. Perform., 1994, 3, p 699–705. https://doi.org/10.1007/BF02818368

    Article  CAS  Google Scholar 

  19. G. Shit, M.V. Kuppusamy and S. Ningshen, Corrosion Resistance Behavior of GTAW Welded AISI Type 304L Stainless Steel, Trans. Indian Inst. Met., 2019, 72, p 2981–2995. https://doi.org/10.1007/s12666-019-01779-w

    Article  CAS  Google Scholar 

  20. A. Ravi Shankar, S.S. Babu, M. Ashfaq et al., Dissimilar Joining of Zircaloy-4 to Type 304L Stainless Steel by Friction Welding Process, J. Mater. Eng. Perform., 2009, 18, p 1272–1279. https://doi.org/10.1007/s11665-009-9376-z

    Article  CAS  Google Scholar 

  21. R. Sundar, P. Ganesh, B.S. Kumar et al., Mitigation of Stress Corrosion Cracking Susceptibility of Machined 304L Stainless Steel Through Laser Peening, J. Mater. Eng. Perform., 2016, 25, p 3710–3724. https://doi.org/10.1007/s11665-016-2220-3

    Article  CAS  Google Scholar 

  22. G. Shit, P. Bhaskar, S. Ningshen et al., Phase Transition of AISI Type 304L Stainless Steel Induced by Severe plastic Deformation Via Cryo-Rolling, AIP Conf. Proceed., 2017, 1832, p 030020. https://doi.org/10.1063/1.4980199

    Article  CAS  Google Scholar 

  23. C.H. Hsu, T.C. Chen, R.T. Huang et al., Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray, Mater, 2017, 10, p 187. https://doi.org/10.3390/ma10020187

    Article  CAS  Google Scholar 

  24. J. Peng, K. Li, J. Peng et al., The Effect of Pre-Strain on Tensile Behaviour of 316L Austenitic Stainless Steel, Mater. Sci. Technol., 2018, 34, p 547–560. https://doi.org/10.1080/02670836.2017.1421735

    Article  CAS  Google Scholar 

  25. J. Peng, K. Li, Q. Gao et al., Estimation of Mechanical Strength for Pre-Strained 316L Austenitic Stainless Steel by Small Punch Test, Vacuum, 2019, 160, p 37–53. https://doi.org/10.1016/j.vacuum.2018.11.015

    Article  CAS  Google Scholar 

  26. J. Peng, Y. Wang, Q. Dai et al., Effect of Stress Triaxiality on Plastic Damage Evolution and Failure Mode for 316L Notched Specimen, Vacuum, 2019, 9, p 1067. https://doi.org/10.1016/j.vacuum.2018.11.015

    Article  CAS  Google Scholar 

  27. K.S. Li and J. Peng, Effect of Pre-Strain on Small Punch Creep Test of 316L Stainless Steel at 373K, Key Eng. Mater., 2019, 795, p 152–158.

    Article  Google Scholar 

  28. M. Eskandari, A. Najafizadeh and A. Kermanpur, Effect of Strain-Induced Martensite on the Formation of Nanocrystalline 316L Stainless Steel after cold Rolling and Annealing, Mater. Sci. Eng. A, 2009, 519, p 46–50. https://doi.org/10.1016/j.msea.2009.04.038

    Article  CAS  Google Scholar 

  29. G. Sha, Y.B. Wang, X.Z. Liao et al., Influence of Equal-Channel Angular Pressing on Precipitation in an Al-Zn-Mg-Cu Alloy, Acta Mater., 2009, 57, p 3123–3132. https://doi.org/10.1016/j.actamat.2009.03.017

    Article  CAS  Google Scholar 

  30. M. Federici, G. Perricone, S. Gialanella et al., Sliding Behaviour of Friction Material Against Cermet Coatings: Pin-On-Disc Study of the Running-in Stage, Tribol. Lett., 2018, 66, p 1–11. https://doi.org/10.1007/s11249-018-1004-3

    Article  CAS  Google Scholar 

  31. Y. Sun, R. Bailey and A. Moroz, Surface Finish and Properties Enhancement of Selective Laser Melted 316L Stainless Steel by Surface Mechanical Attrition Treatment, Surf. Coat. Technol., 2019, 378, p 124993. https://doi.org/10.1016/j.surfcoat.2019.124993

    Article  CAS  Google Scholar 

  32. J.P. Riviére, C. Brin and J.P. Villain, Structure and Topography Modifications of Austenitic Steel Surfaces After Friction in Sliding Contact, Appl. Phys. A, 2003, 76, p 277–283. https://doi.org/10.1007/s00339-002-1481-x

    Article  CAS  Google Scholar 

  33. M.A. Baker and J.E. Castle, The Initiation of Pitting Corrosion at MnS Inclusions, Corros. Sci., 1993, 34, p 667–682. https://doi.org/10.1016/0010-938X(93)90279-P

    Article  CAS  Google Scholar 

  34. M.A. Baker and J.E. Castle, The Initiation of Pitting Corrosion of Stainless Steels at Oxide Inclusions, Corros. Sci., 1992, 33, p 1295–1312. https://doi.org/10.1016/0010-938X(92)90137-R

    Article  CAS  Google Scholar 

  35. R.L. Fullman, Formation of Annealing Twins During Grain Growth, J. Appl. Phys., 1951, 22, p 1350–1355. https://doi.org/10.1063/1.1699865

    Article  CAS  Google Scholar 

  36. G. Meng, F. Sun, Y. Shao et al., Influence of Nano-Scale Twins (NT) Structure on Passive Film Formed on Nickel, Electrochim. Acta., 2010, 55, p 2575–2581. https://doi.org/10.1016/j.electacta.2009.12.027

    Article  CAS  Google Scholar 

  37. W.P. Wu, G.Q. Sun, Q.Q. Wang et al., Preparation, Wear Resistance, and Corrosion Performance of arc-Sprayed Zn, Al, and Zn-Al Coatings on Carbon Steel Substrates, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-07889-3

    Article  Google Scholar 

  38. Z. Jia, C. Du, C. Li et al., Study on Pitting Process of 316L Stainless Steel by Means of Staircase Potential Electrochemical Impedance Spectroscopy, Int. J. Min. Met. Mater., 2011, 18, p 48–52. https://doi.org/10.1007/s12613-011-0398-9

    Article  CAS  Google Scholar 

  39. W.P. Wu, J.W. Liu, Y. Zhang et al., Electrochemical Characteristics of Iridium Coating by Double Glow Plasma Discharge Process on Titanium Alloy Substrates, Surf. Eng., 2019, 35, p 954–961. https://doi.org/10.1080/02670844.2019.1579400

    Article  CAS  Google Scholar 

  40. Zhang ZJ (2014) Experimental research on the effect of strain hardening on stress corrosion of 304 and 316L austenitic stainless steel, PhD dissertation, Zhejiang University of Technology, 2014 (In Chinese).

  41. O. Bouaziz and N. Guelton, Modelling of TWIP Effect on Work-Hardening, Mater. Sci. Eng. A., 2001, 319–321, p 246–249. https://doi.org/10.1016/S0921-5093(00)02019-0

    Article  Google Scholar 

  42. K.P. Staudhammer and L.E. Murr, The Effect of Prior Deformation on the Residual Microstructure of Explosively Deformed Stainless Steels, Mater. Sci. Eng., 1980, 44, p 97–113. https://doi.org/10.1016/0025-5416(80)90235-9

    Article  CAS  Google Scholar 

  43. Z.Q. Zhang, H.Y. Jing, L.Y. Xu et al., Microstructural Characterization and Electron Backscatter Diffraction Analysis Across the Welded Interface of Duplex Stainless Steel, Appl. Surf. Sci., 2017, 413, p 327–343. https://doi.org/10.1016/j.apsusc.2017.03.301

    Article  CAS  Google Scholar 

  44. L.H. Han, T. Han, G.X. Chen et al., Influence of Heat Input on Microstructure, Hardness and Pitting Corrosion of Weld Metal in Duplex Stainless Steel Welded by Keyhole-TIG, Mater. Charact., 2021, 175, p 111052. https://doi.org/10.1016/j.matchar.2021.111052

    Article  CAS  Google Scholar 

  45. M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad et al., Microstructure and Mechanical Properties of Friction Stir Processed AISI 316L Stainless Steel, Mater. Des., 2015, 67, p 82–94. https://doi.org/10.1016/j.matdes.2014.10.082

    Article  CAS  Google Scholar 

  46. F.J. Cao, G.Q. Huang, W.T. Hou et al., Simultaneously Enhanced Strength-Ductility Synergy and Corrosion Resistance in Submerged Friction Stir Welded Super Duplex Stainless Steel Joint Via Creating Ultrafine Microstructure, J. Mater. Process. Technol., 2022, 307, p 117660. https://doi.org/10.1016/j.jmatprotec.2022.117660

    Article  CAS  Google Scholar 

  47. K.K. Ray, V. Toppo and S.B. Singh, Influence of Pre-Strain on the Wear Resistance of a Plain Carbon Steel, Mater. Sci. Eng. A., 2006, 420, p 333–341. https://doi.org/10.1016/j.msea.2006.01.093

    Article  CAS  Google Scholar 

  48. M. Nabil Bassim and M.R. Bayoumi, The Observation of Dislocation Structures during the Fracture of Prestrained AISI 4340 Steel, Mater. Sci. Eng., 1986, 81, p 317–324. https://doi.org/10.1016/0025-5416(86)90271-5

    Article  Google Scholar 

  49. W.Y. Wang, Q.L. Pan, X.D. Wang et al., Effect of Laser Shock Peening on Corrosion Behaviors of Ultra-High Strength Al-Zn-Mg-Cu Alloys Prepared by Spray Forming and Ingot Metallurgy, Corros. Sci., 2022, 205, p 110458. https://doi.org/10.1016/j.corsci.2022.110458

    Article  CAS  Google Scholar 

  50. S.A. Zakaria, A.S. Anayida, H. Zuhailawati et al., Characterization of Mechanical and Corrosion Properties of Cryorolled Al 1100 Alloy: Effect of Annealing and Solution Treatment, T. Nonferr. Metal Soc., 2021, 31, p 2949–2961. https://doi.org/10.1016/S1003-6326(21)65705-9

    Article  CAS  Google Scholar 

  51. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova et al., Corrosion Resistance of Ultra Fine-Grained Ti, Scr. Mater., 2004, 51, p 225–229. https://doi.org/10.1016/j.scriptamat.2004.04.011

    Article  CAS  Google Scholar 

  52. H. Luo, C.F. Dong, X.G. Li et al., The electrochemical Behaviour of 2205 Duplex Stainless Steel in Alkaline Solutions with Different pH in the Presence of Chloride, Electrochimi. Acta., 2012, 64, p 211–220. https://doi.org/10.1016/j.electacta.2012.01.025

    Article  CAS  Google Scholar 

  53. K. Kishore, A.K. Chandan, B.K. Sahoo et al., Novel observation of dominant role of strain rate over strain during pre-straining on corrosion behaviour of 304L austenitic stainless steel, Mater. Chem. Phys., 2022, 277, p 125522. https://doi.org/10.1016/j.matchemphys.2021.125522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the National Natural Science Foundation of China (Grant No. 51875053), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant no. SJCX22_1429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangping Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 717 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Huang, J., Peng, J. et al. Effect of Strain Hardening on Wear and Corrosion Resistance of 316L Austenitic Stainless Steel. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08535-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08535-8

Keywords

Navigation