Skip to main content

Advertisement

Log in

Microbiologically Influenced Corrosion: Uncovering Mechanisms and Discovering Inhibitor—Metal and Metal Oxide Nanoparticles as Promising Biocorrosion Inhibitors

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Metal and metal oxide nanoparticles (MMO NPs) are excellent antimicrobials, anti-biofilm and possess quorum sense quenching and inhibition property. The biocides used to control biocorrosion are expensive, release unwanted by-products into the environment and in most cases not effective against established biofilm. MMO NPs are ecofriendly, less expensive, and possess excellent antimicrobial, anti-biofilm, and anti-quorum sensing activity and hence are a promising group of inhibitors against biocorrosion. This review highlights the mechanisms of biocorrosion and biofilm formation, microbes involved, and properties of metal and metal oxide NPs that make them suitable as biocorrosion inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sources are PubMed, Google scholar and Science direct.

References

  1. Abdulkareem EH, Memarzadeh K, Allaker RP, Huang J, Pratten J, Spratt D (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent 43:1462–1469. https://doi.org/10.1016/j.jdent.2015.10.010

    Article  CAS  Google Scholar 

  2. Abdel-Aziz MM, Emam TM, Elsherbiny EA (2020) Bioactivity of magnesium oxide nanoparticles synthesized from cell filtrate of endobacterium Burkholderia rinojensis against Fusarium oxysporum. Mater Sci Eng, C 109:110617. https://doi.org/10.1016/j.msec.2019.110617

    Article  CAS  Google Scholar 

  3. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54(3):365–368. https://doi.org/10.1007/s12088-014-0462-z

    Article  CAS  Google Scholar 

  4. Agwa OK, Iyalla D, Abu GO (2017) Inhibition of biocorrosion of steel coupon by sulphate reducing bacteria and iron oxidizing bacteria using Aloe Vera (Aloe barbadensis) extracts. J Appl Sci Environ Manag 21(5):833–838

    CAS  Google Scholar 

  5. Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 57(2):188–194. https://doi.org/10.1007/s12088-017-0640-x

    Article  CAS  Google Scholar 

  6. Ahmed KBA, Raman T, Anbazhagan V (2016) Platinum nanoparticles inhibit bacteriaproliferation and rescue zebrafish from bacterialinfection. RSC Adv 2016(6):44415–44424. https://doi.org/10.1039/c6ra03732a

    Article  Google Scholar 

  7. Akther T, Khan MS, Hemalatha S (2020) Biosynthesis of silver nanoparticles via fungal cell filtrate and their antiquorumsensing against Pseudomonas aeruginosa. J Environ Chem Eng 8:104365. https://doi.org/10.1016/j.jece.2020.104365

    Article  CAS  Google Scholar 

  8. Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M, Hassan I, Khan JM, Ashraf GM, Alsalme A, Al-Ajmi MF, Tarasov VV, Aliev G (2016) Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep 6:36761. https://doi.org/10.1038/srep36761

    Article  CAS  Google Scholar 

  9. Ali AS, Gires U, Fathul KS, Asmat A (2016) Inhibition of the planktonic and sessile growth and biocorrosion of Desulfovibrio sp Solution which is isolated from crude oil fluid by the ethyl acetate extraction from marine Alcaligenes faecalis for carbon steel protection. Austral J Basic Appl Sci 10(18):233–243

    Google Scholar 

  10. Altikatoglu M, Attar A, Erci F, Cristache CM, Isildak I (2017) Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity. Fresenius Environ Bull 26(12A):7832–7837

    CAS  Google Scholar 

  11. Amininezhad SM, Rezvani A, Amouheidari M, Amininejad SM, Rakhshani S (2015) The antibacterial activity of SnO2 nanoparticles against Escherichia coli and Staphylococcus aureus. Zahedan J Res Med Sci. 17(9): https://doi.org/10.17795/zjrms-1053

    Article  CAS  Google Scholar 

  12. Anju S, Sarada J (2016) Quorum sensing inhibiting activity of silver nanoparticles synthesized by Bacillus isolate. Int J Pharm Biol Sci. 6(1):47–53

    CAS  Google Scholar 

  13. Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J (2014) Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa. J Basic Microbiol. https://doi.org/10.1002/jobm.201300748

    Article  Google Scholar 

  14. Anupama R, Lulu S, Madhusmita R, Vino S, Mukherjee A, Babu S (2019) Insights into the interaction of key biofilm proteins in Pseudomonas aeruginosa PAO1 with TiO2nanoparticle: an in silico analysis. J Theor Biol 462:12–25. https://doi.org/10.1016/j.jtbi.2018.10.057

    Article  CAS  Google Scholar 

  15. Arsalan N, Kashi EH, Hasan A, Doost ME, Rasti B, Paray BA, Nakhjiri MZ, Sari S, Sharifi M, Shahpasand K, Akhtari K, Haghighat S, Falahati M (2020) Exploring the interaction of cobalt oxide nanoparticles with albumin, leukemia cancer cells and pathogenic bacteria by multispectroscopic, docking, cellular and antibacterial approaches. Int J Nanomed 15:4607–4623. https://doi.org/10.2147/IJN.S257711

    Article  Google Scholar 

  16. Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng, C 49:408–415. https://doi.org/10.1016/j.msec.2015.01.042

    Article  CAS  Google Scholar 

  17. Arunkumar M, Mahesh N, Balakumar S, Sivakumar R, Priyadharshni S (2013) Antiquorum sensing and antibacterial activity of silver nanoparticlessynthesized by mutant Klebsiella pneumoniae MTCC 3354. Asian J Chem 25(17):9961–9964. https://doi.org/10.14233/ajchem.2013.15754

    Article  CAS  Google Scholar 

  18. Arunkumar M, Suhashini K, Mahesh N, Ravikumar R (2014) Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum. Bangladesh J Pharmacol 9:54–59

    Article  Google Scholar 

  19. Arya A, Gupta K, Chundawat TS (2020) In vitro antimicrobial and antioxidant activity ofbiogenically synthesized palladium and platinum nanoparticles using Botryococcus braunii. Turk J Pharm Sci 17(3):299–306. https://doi.org/10.4274/tjps.galenos.2019.94103

    Article  CAS  Google Scholar 

  20. Awasthi A, Sharma P, Jangir L, Kamakshi et al (2020) Dose dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in presence of ZnO nanoparticles. Mater Sci Eng, C 113: https://doi.org/10.1016/j.msec.2020.111021

    Article  CAS  Google Scholar 

  21. Azad A, Rostamifar S, Modaresi F, Bazrafkan A, Rezaie (2020) Assessment of the antibacterial effects of bismuth nanoparticles against Enterococcus faecalis. Biomed Res Int. https://doi.org/10.1155/2020/5465439

    Article  Google Scholar 

  22. Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int J Nanomed 7:3527–3535

    Article  CAS  Google Scholar 

  23. Azhir E, Etefagh R, Shahtahmasebi N, Mashreghi M, Pordeli P (2015) Preparation, characterization and antibacterial activity of manganese oxide nanoparticles. Phys Chem Res 3(3):197–204. https://doi.org/10.22036/pcr.2015.9329

    Article  CAS  Google Scholar 

  24. Azizi S, Shahri M, Rahman HS, Rahim RA, Rasedee A, Mohamad R (2017) Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int J Nanomed 12:8841–8853

    Article  CAS  Google Scholar 

  25. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  Google Scholar 

  26. Bakkiyaraj D, Pandian SK (2014) Biofilm inhibition by nanparticles. In: Rumbaugh K, Ahmad I (eds) Antibiofilm agents. Springer series on Biofilms. Springer, Berlin

    Google Scholar 

  27. Balasubramanian S, Kala SMJ, Pushparaj TL (2020) Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Technol 57:101620. https://doi.org/10.1016/j.jddst.2020.101620

    Article  CAS  Google Scholar 

  28. Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, Pietro LD, Perilli M, Amicosante G, Santucci S, Celenza G (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. BBA - Biomembranes 1860:2428–2435. https://doi.org/10.1016/j.bbamem.2018.07.002

    Article  CAS  Google Scholar 

  29. Bhuvaneshwari M, Bairoliya S, Parashar A, Chandrasekaran N, Mukherjee A (2016) Differential toxicity of Al2O3 particles on Gram-positive and Gram-negative sediment bacterial isolates from freshwater. Environ Sci Pollut Res 23:12095–12106. https://doi.org/10.1007/s11356-016-6407-9

    Article  CAS  Google Scholar 

  30. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  31. Campos V, Almaguer-Flores A, Velasco-Aria D, Díaz D, Rodil SE (2018) Bismuth and silver nanoparticles as antimicrobial agent over subgingival bacterial and nosocomial strains. J Mater Sci Eng A 8(7–8):142–146. https://doi.org/10.17265/2161-6213/2018.7-8.002

    Article  CAS  Google Scholar 

  32. Carey DN, Knut D, Kevin RF (2016) Spatial structure, cooperation and competition in biofilm. Nat Rev Microbiol 14:589–600

    Article  CAS  Google Scholar 

  33. Carvalho MP, Wolf-Rainer A (2012) Antimicrobial and biofilm inhibiting diketopiperazines. Curr Med Chem 19(21):3564–3577

    Article  Google Scholar 

  34. Castillo IF, Matteis LD, Marquina C, Guillén EG, Fuente JM, Mitchell SG (2019) Protection of 18th century paper using antimicrobial nano-magnesium oxide. Int Biodeter Biodegrad 141:79–86. https://doi.org/10.1016/j.ibiod.2018.04.004

    Article  CAS  Google Scholar 

  35. Chapman J, Weir E, Regan F (2010) Period four metal nanoparticles on the inhibition of biofouling. Colloids Surf B 78:208–216. https://doi.org/10.1016/j.colsurfb.2010.03.002

    Article  CAS  Google Scholar 

  36. Chatterjee A, Nishanthini D, Sandhiya N, Abraham J (2016) Biosynthesis of titanium dioxide nanoparticles using Vigna radiata. Asian J Pharm Clin Res 9(4):85–88

    CAS  Google Scholar 

  37. Chen Z, Gao S-H, Jin M, Sun S, Lu J, Yang P, Bond PL, Yuan Z, Guo J (2019) Physiological and transcriptomic analyses reveal CuO nanoparticle inhibition of anabolic and catabolic activities of sulfate-reducing bacterium. Environ Int 125:65–74. https://doi.org/10.1016/j.envint.2019.01.058

    Article  CAS  Google Scholar 

  38. Dalvand LF, Hosseini F, Dehaghi SM, Torbati ES (2018) Inhibitory effect of bismuth oxide nanoparticles produced by Bacillus licheniformis on methicillin- resistant Staphylococcus aureus strains (MRSA). Iranian J Biotech 16(4): https://doi.org/10.21859/ijb.2102

    Article  Google Scholar 

  39. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidantand antibacterial behavior of CuO nanoparticles. Colloids Surf B 101:430–433

    Article  CAS  Google Scholar 

  40. Das KR, Kerkar S, Meena Y, Mishra S (2017) Effects of iron nanoparticles on iron-corroding bacteria. Biotech 7:385. https://doi.org/10.1007/s13205-017-1018-9

    Article  Google Scholar 

  41. Das KR, Tiwari AK, Kerkar S (2020) Psychrotolerant Antarctic bacteria biosynthesize gold nanoparticles activeagainst sulphate reducing bacteria. Prep Biochem Biotechnol 50(5):438–444. https://doi.org/10.1080/10826068.2019.1706559

    Article  CAS  Google Scholar 

  42. Dhandapani P, Maruthamuthu S, Rajagopal G (2012) Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effecton aquatic biofilm. J Photochem Photobiol, B 110:43–49. https://doi.org/10.1016/j.jphotobiol.2012.03.003

    Article  CAS  Google Scholar 

  43. Dhas TS, Sowmiya P, Kumar VG, Ravi M, Suthindhiran K, Borgio JF, Narendrakumar G, Kumar VR, Karthick V, Kumar CMV (2020) Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatal Agric Biotechnol 26:101627. https://doi.org/10.1016/j.bcab.2020.101627

    Article  Google Scholar 

  44. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M (2018) Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantean: catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag 9:29–36

    Google Scholar 

  45. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhair AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11): https://doi.org/10.1371/journal.pone.0111289

    Article  CAS  Google Scholar 

  46. Dyshlyuk L, Babich O, Ivanova S, Vasilchenco N, Atuchin V, Korolkov I, Russakov D, Prosekov A (2020) Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2019.104821

    Article  Google Scholar 

  47. El-Sayyad GS, Mosallam FM, El-Batal MI (2018) One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays withantimicrobial activity against multidrug-resistant microbes. Adv Powder Technol 29:2616–2625. https://doi.org/10.1016/j.apt.2018.07.009

    Article  CAS  Google Scholar 

  48. Erlin Z, Lei Y, Jianwei X, Haiyan C (2010) Microstructure, mechanical properties and biocorrosion properties of Mg–Si (-Ca, Zn) alloy for biomedical application. Acta Biomater 6(5):1756–1762

    Article  CAS  Google Scholar 

  49. Ezealisiji KM, Noundou XS (2020) Green synthesis of zinc oxide nanoparticles and their antibiotic-potentiation activities of mucin against pathogenic bacteria. Res J Nanosci Nanotechnol 10(1):9–14. https://doi.org/10.3923/rjnn.2020.9.14

    Article  Google Scholar 

  50. Ezealisiji KM, Noundou XS, Ukwueze SE, Atuzie W (2018) Biosynthesis, characterization and antimicrobial activity of silver nanoparticles using cell free lysate of Bacillus subtilis: a biotechnology approach. Am J Nanosci Nanotechnol Res 6:18–27

    Google Scholar 

  51. Ezealisiji KM, Noundou XS, Ukwueze SE (2017) Green synthesis and characterization of monodispersed silver nanoparticles using root bark aquous extract of Annona muricata Linn and their antimicrobial activity. Appl Nanosci 7:905–911. https://doi.org/10.1007/s13204-017-0632-5

    Article  CAS  Google Scholar 

  52. Fernando SID, Cruz KSJ (2019) Ethnobotanical biosynthesis of gold nanoparticles and itsdownregulation of Quorum Sensing-linked AhyR gene in Aeromonas hydrophila. SN Appl Sci 2:570. https://doi.org/10.1007/s42452-020-2368-1

    Article  CAS  Google Scholar 

  53. Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A (2019) Antibacterial effects of iron oxide (Fe3O4) nanoparticles: distinguishingconcentration- dependent effects with different bacterial cells growthand membrane-associated mechanisms. Appl Microbiol Biotechnol 103:2773–2782. https://doi.org/10.1007/s00253-019-09653-x

    Article  CAS  Google Scholar 

  54. Gabrielyan L, Hakobyan L, Hovhannisyan A, Trchounian A (2019) Effects of iron oxide (Fe3O4) nanoparticles on Escherichia coli antibiotic-resistant strains. J Appl Microbiol 126:1108–1116. https://doi.org/10.1111/jam.14214

    Article  CAS  Google Scholar 

  55. Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali AA (2017) Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. Int J Nanomed 12:5409–5419. https://doi.org/10.2147/IJN.S142857

    Article  CAS  Google Scholar 

  56. Garcıa-Lara B, Saucedo-Mora MA, Roldan-Sanchez JA, Perez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-Guerrero V, Garcıa-Contreras R (2015) Inhibition of quorum-sensing-dependent virulence factorsand biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol 61:299–305. https://doi.org/10.1111/lam.12456

    Article  CAS  Google Scholar 

  57. Giovanna B, Giuseppantoni M, Semih E (2015) Antimicrobial peptides and their interaction with biofilm of medically relevant bacteria. Biochem Biophys Acta 1858:1044–1060

    Google Scholar 

  58. Ghareib M, Abdallah W, Tahon MA, Tallima A (2019) Biosynthesis of copper oxide nanoparticles using the preformed biomass of Aspergillus fumigatus and their antibacterial and photocatalytic activities. Digest J Nanomater Biostruct 14(2):291–303

    Google Scholar 

  59. Ghasemian E, Naghoni A, Rahvar H, Kialha M, Tabaraie B (2015) Evaluating the effect of copper nanoparticles in inhibiting Pseudomonas aeruginosa and Listeria monocytogenes biofilm formation, Jundishapur. J Microbiol 8(5):e17430. https://doi.org/10.5812/jjm.8(5)2015.17430

    Article  Google Scholar 

  60. Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y (2019) Unravelling mechanisms of bacterial quorum sensing disruption bymetal-based nanoparticles. Sci Total Environ 696: https://doi.org/10.1016/j.scitotenv.2019.133869

    Article  CAS  Google Scholar 

  61. Goswami SR, Sahareen T, Singh M, Kumar S (2015) Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm. J Ind Eng Chem 26:73–80. https://doi.org/10.1016/j.jiec.2014.11.017

    Article  CAS  Google Scholar 

  62. Gowri S, Gandhi RR, Sundrarajan M (2014) Structural, optical, antibacterial and antifungal propertiesof zirconia nanoparticles by biobased protocol. J Mater Sci Technol 30(8):782–790. https://doi.org/10.1016/j.jmst.2014.03.002

    Article  CAS  Google Scholar 

  63. Gu T (2012) New understanding of biocorrosion mechanisms and their classifications. J Microb Biochem Technol 4(4):3–6

    Article  Google Scholar 

  64. Gupta K, Chundawat TS (2019) Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Mater Res Express 6:10506. https://doi.org/10.1088/2053-1591/ab4219

    Article  CAS  Google Scholar 

  65. Gupta D, Singh A, Khan AU (2017) Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 12:454. https://doi.org/10.1186/s11671-017-2222-6

    Article  CAS  Google Scholar 

  66. Habimana O, Zanoni M, Vitale S, O’Neill T, Scholz D, Xu B, Casey E (2018) One particle, two targets: a combined action of functionalized gold nanoparticles, against Pseudomonas fluorescens biofilms. J Colloid Interface Sci 526:419–428. https://doi.org/10.1016/j.jcis.2018.05.014

    Article  CAS  Google Scholar 

  67. Hafeez M, Shaheen R, Akram B, Abdin Haq et al (2020) Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater Res Express 7: https://doi.org/10.1088/2053-1591/ab70dd

    Article  CAS  Google Scholar 

  68. Haneefa MM, Jayandran M, Balasubramanian V (2017) Green synthesis characterization and antimicrobial activity evaluation of manganese oxide nanoparticles and comparative studies with salicylalchitosan functionalized nanoform. Asian J Pharm 11(1):65–74

    CAS  Google Scholar 

  69. Haneefa MM, Jayandran M, Balasubramanian V (2017) Evaluation of antimicrobial activity of green-synthesized manganese oxide nanoparticles and comparative studies with curcuminaniline functionalized. Asian J Pharm Clin Res 10(3):347–352. https://doi.org/10.22159/ajpcr.2017.v10i3.16246

    Article  CAS  Google Scholar 

  70. Haq S, Rehman W, Waseem M, Shah A, Khan AR, Rehman MU, Ahmad P, Khan B, Ali G (2020) Green synthesis and characterization of tin dioxide nanoparticles for photocatalytic and antimicrobial studies. Mater Res Express 7: https://doi.org/10.1088/2053-1591/ab6fa1

    Article  CAS  Google Scholar 

  71. Hashimoto M, Yanagiuchi H, Kitagawa H, Honda Y (2017) Inhibitory effect of platinum nanoparticles on biofilm formation of oral bacteria. Nano Biomed 9(2):77–82

    Google Scholar 

  72. Hayat S, Muzammil S, Aslam B, Siddigue MH, Saqalein M, Nisar MA (2019) Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 14(1):61–72

    Article  CAS  Google Scholar 

  73. Hayat S, Muzammil S, Rasool MH, Nisar Z, Hussain SZ, Sabri AN, Jamil S (2018) In vitro anti-biofilm and anti-adhesion effects ofmagnesium oxide nanoparticles against antibiotic resistantbacteria. Microbiol Immunol 62:211–220. https://doi.org/10.1111/1348-0421.12580

    Article  CAS  Google Scholar 

  74. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP Jr, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14:54. https://doi.org/10.1186/s12951-016-0202-0

    Article  CAS  Google Scholar 

  75. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta- Dube I, Arevalo-Niño K, Cabral-Romero C (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed 8:1645–1652

    Google Scholar 

  76. Hou J, Li T, Miao L, You G, Xu Y, Liu S (2019) Effects of titanium dioxide nanoparticles on algal and bacterialcommunities in periphytic biofilms. Environ Pollut 251:407–414. https://doi.org/10.1016/j.envpol.2019.04.136

    Article  CAS  Google Scholar 

  77. Hsueh Y-H, Ke W-J, Hsieh C-T, Lin K-S, Tzou D-Y, Chiang C-L (2015) ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation. PLoS ONE 10(6): https://doi.org/10.1371/journal.pone.0128457

    Article  CAS  Google Scholar 

  78. Hussain A, Oves M, Alajmi MF, Hussain I, Amir S, Ahmed J, Rehman MT, El- Seedi HR, Ali I (2019) Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. R Soc Chem Adv 9:15357. https://doi.org/10.1039/cra01659g

    Article  CAS  Google Scholar 

  79. Immanuel OM, Abu GO, Stanley HO (2016) Inhibition of biogenic sulphide production and biocorrosion of carbon steel by sulphate reducing bacteria using Ocimum gratissimum essential oil. J Adv Biol Biotechnol 10(2):1–12

    Article  Google Scholar 

  80. Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G (2018) Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol, B 178:249–258. https://doi.org/10.1016/j.jphotobiol.2017.11.006

    Article  CAS  Google Scholar 

  81. Itohiya H, Matsushima Y, Shirakawa S, Kajiyama S, Yashima A, Nagano T, Gomi K (2019) Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter. PLoS ONE 14(9): https://doi.org/10.1371/journal.pone.0222634

    Article  CAS  Google Scholar 

  82. Itohiya H, Matsushima Y, Shirakawa S, Kajiyama S, Yashima A, Nagano T, Gomi K (2019) Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter. PLoS ONE 14(9):e0222634. https://doi.org/10.1371/journal.pone.0222634

    Article  CAS  Google Scholar 

  83. Ituen E, Ekemini E, Yuanhua L, Singh A (2020) Green synthesis of Citrus reticulata peels extract silver nanoparticlesand characterization of structural, biocide and anticorrosion properties. J Mol Struct 1207: https://doi.org/10.1016/j.molstruc.2020.127819

    Article  CAS  Google Scholar 

  84. Jagathesan G, Rijiv P (2018) Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 13:90–94

    Article  Google Scholar 

  85. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ Sci 30:168–175

    Article  Google Scholar 

  86. James AG, Steve M (2012) Interaction in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 13(8):739–755

    Article  Google Scholar 

  87. Jangra SL, Stalin K, Dilbaghi N, Kumar S, Tawale J, Singh SP, Pasricha R (2012) Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J Nanosci Nanotechnol 12:7105–7112

    Article  CAS  Google Scholar 

  88. Jasim NA, Al-Gashaa FA, Al-Marjani MF, Al-Rahal AH, Abid HA, Al-Kadhmi NA, Jakaria M, Rheima AM (2020) ZnO nanoparticles inhibit growth and biofilm formation of vancomycin-resistant S. aureus (VRSA). Biocatal Agric Biotechnol 29:101745. https://doi.org/10.1016/j.bcab.2020.101745

    Article  Google Scholar 

  89. Jayabalan J, Mani G, Krishnan N, Pernabas J, Devadoss JM, Jang HT (2019) Green biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and it’s In vitro antibacterial and anti-biofilm activity. Biocatal Agric Biotechnol 21: https://doi.org/10.1016/j.bcab.2019.101327

    Article  Google Scholar 

  90. Jayandran M, Haneefa MM, Balasubramanian V (2015) Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. J Appl Pharm Sci 5(12):105–110. https://doi.org/10.7324/JAPS.2015.501218

    Article  CAS  Google Scholar 

  91. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaura K, Karthik L, Rao KVB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and the activity against pathogenic bacteria and fungi. Spectrochimica Acta part A 90:78–84. https://doi.org/10:1016/j.saa.2012.01.006

    Article  CAS  Google Scholar 

  92. Jeevigunta NLL, Navva VR (2017) Purification and antimicrobial activity of cobalt nano particles from Neurospora crassa. Res J Biotechnol 12(10):60–69

    CAS  Google Scholar 

  93. Jin-Hyung L, Jintae L (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169(12):888–896

    Article  CAS  Google Scholar 

  94. Jing H, Mezgebe B, Hassan AA, Sahle-Demessie E, Sorial GA, Bennett-Stamper C (2014) Experimental and modeling studies of sorption of ceria nanoparticle on microbial biofilms. Biores Technol 161:109–117. https://doi.org/10.1016/j.biortech.2014.03.015

    Article  CAS  Google Scholar 

  95. Jothiprakasam V, Sambantham M, Chinnathambi S, Vijayaboopathi S (2017) Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA. Arch Oral Biol 73:21–24. https://doi.org/10.1016/j.archoralbio.2016.09.003

    Article  CAS  Google Scholar 

  96. Kadhum SA (2017) The effect of two types of nano-particles (ZnO & SiO2) on different types of bacterial growth. Biomed Pharmacol J 10(4):1701–1708. https://doi.org/10.13005/bpj/1282

    Article  Google Scholar 

  97. Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Rajeswari VD (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano 3:48–55

    Article  Google Scholar 

  98. Kanagasubbulakshmi S, Kadirvelu K (2017) Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Sci J 2(4):422–427. https://doi.org/10.14429/dlsj.2.12277

    Article  Google Scholar 

  99. Karimiyan A, Najafzadeh H, Ghorbanpour M, Hekmati-Moghaddam SH (2015) Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J Res Med Sci. 17(10): https://doi.org/10.17795/zjrms-2179

    Article  CAS  Google Scholar 

  100. Khan ST, Ahamed M, Alhadlaq HA, Musarrat J, Al-Khedhairy A (2013) Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Arch Oral Biol 58:1804–1811. https://doi.org/10.1016/j.archoralbio.2013.09.011

    Article  CAS  Google Scholar 

  101. Khan F, Manivasagan P, Lee J-W, Pham DTN, Oh J, Kim Y-M (2019) Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Marine Drugs 17:208. https://doi.org/10.3390/md17040208

    Article  CAS  Google Scholar 

  102. Kip N, Veen JAV (2015) The dual role of microbes in corrosion. ISME J 9:542–551. https://doi.org/10.1038/ismej.2014.169

    Article  CAS  Google Scholar 

  103. Korkmaz N, Ceylan Y, Karada A, Bülbül AS, Aftab MN, Saygıli S, Sen F (2020) Biogenic silver nanoparticles synthesized from Rhododendronponticum and their antibacterial, antibiofilm and cytotoxic activities. J Pharm Biomed Anal 179: https://doi.org/10.1016/j.jpba.2019.112993

    Article  CAS  Google Scholar 

  104. Kuchekar SR, Dhage PM, Aher HR, Han SH (2018) Green synthesis of cobalt nanoparticles, its characterization and antimicrobial activities. Int J Chem Phys Sci 7:190–198

    CAS  Google Scholar 

  105. Kumar N, Omoregie EO, Rose J, Masion A, Lloyd JR, Diels L, Bastiens L (2014) Inhibition of sulphate reducing bacteria in aquifer sediment by iron nanoparticles. Water Res 51:64–72

    Article  CAS  Google Scholar 

  106. Kumaresan M, Anand KV, Govindaraju K, Tamilselvan S, Kumar VG (2018) Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against Gram positive and Gram negative bacteria. Microb Pathog 124:311–315. https://doi.org/10.1016/j.micpath.2018.08.060

    Article  CAS  Google Scholar 

  107. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13:91. https://doi.org/10.1186/s12951-015-0147-8

    Article  CAS  Google Scholar 

  108. Lars DR, Douglas BW (2011) Physicochemical regulation of biofilm formation. MRS Bull 36(5):347–355

    Article  CAS  Google Scholar 

  109. Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169:888–896. https://doi.org/10.1016/j.micres.2014.05.005

    Article  CAS  Google Scholar 

  110. Li R, Chen Z, Ren N, Wang Y, Wang Y, Yu F (2019) Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. J Photochem Photobiol, B 199: https://doi.org/10.1016/j.jphotobiol.2019.111593

    Article  CAS  Google Scholar 

  111. Li N, Wang L, Yan H, Wang M, Shen D, Yin J, Shentu J (2018) Effects of low- level engineered nanoparticles on the quorumsensing of Pseudomonas aeruginosa PAO1. Environ Sci Pollut Res 25:7049–7058. https://doi.org/10.1007/s11356-017-0947-5

    Article  CAS  Google Scholar 

  112. Liang Y, Yang L, Hong W, Niels B, Soren M, Zhi-jun S (2011) Current understanding of multispecies biofilm. Int J Oral Sci 3:74–81

    Article  Google Scholar 

  113. Lioa S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, Chen L (2019) Antibacterial activity and mechanism of silver nanoparticles against multidrug resistant Pseudomonas aeruginosa. Int J Nanomed 14:1469–1487

    Article  Google Scholar 

  114. Lin J, Ballim R (2012) Biocorrosion control: current strategies and promising alternatives. Afr J Biotech 11(91):15736–15747

    Article  CAS  Google Scholar 

  115. Liu L, Li J-H, Zi S-H, Liu F-R, Deng C, Ao X, Zhang P (2019) AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 103:6195–6204. https://doi.org/10.1007/s00253-019-09905-w

    Article  CAS  Google Scholar 

  116. Loo YY, Rukayadi Y, Nor-Khaizura M-A-R, Kuan CH, Chieng BW, Nishibuchi M, Radu S (2018) In vitro antimicrobial activity of green synthesized silver nanoparticles against elected Gram negative foodborne pathogens. Front Microbiol 9:1555. https://doi.org/10.3389/fmicb.2018.01555

    Article  Google Scholar 

  117. Mahlangeni NT, Magura J, Moodley R, Baijnath H, Chenia H (2020) Biogenic synthesis, antioxidant and antimicrobial activity of silver and manganese dioxide nanoparticles using Cussonia zuluensis Strey. Chem Pap 74:4253–4265. https://doi.org/10.1007/s11696-020-01244-9

    Article  CAS  Google Scholar 

  118. Majumdar M, Khan SA, Biswas SC, Roy DN et al (2020) In vitro and in silico investigation of anti-biofilm activity of Citrus macroptera fruit extract mediated silver nanoparticles. J Mol Liq 302: https://doi.org/10.1016/j.molliq.2020.112586

    Article  CAS  Google Scholar 

  119. Manafi Z, Hashemi M, Abdollahi H, Gregory JO (2013) Biocorrosion of water pipeline by sulphate reducing bacteria in a mining environment. Afr J Biotech 12(46):6504–6516. https://doi.org/10.5897/AJB11.3250

    Article  CAS  Google Scholar 

  120. Manikandan V, Velmurugan P, Park J-H, Lovanh N, Seo S-K, Jayanthi P, Park Y-J, Cho M, Oh B-T (2016) Synthesis andantimicrobialactivityofpalladium nanoparticlesfrom Prunus_yedoensis leaf extract. Mater Lett 185:335–338. https://doi.org/10.1016/j.matlet.2016.08.120

    Article  CAS  Google Scholar 

  121. Maruthupandy M, Rajivgandhi GN, Quero F, Li W-J (2020) Anti-quorum sensing and anti-biofilm activity of nickel oxide nanoparticles against Pseudomonas aeruginosa. J Environ Chem Eng 8: https://doi.org/10.1016/j.jece.2020.104533

    Article  CAS  Google Scholar 

  122. Mathur A, Bhuvaneshwari M, Babu S, Chandrasekaran N, Mukherjee A (2017) The effect of TiO2 nanoparticles on sulphate reducing bacteria and their consortium under anaerobic conditions. J Environ Chem Eng 5:3741–3748

    Article  CAS  Google Scholar 

  123. Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL (2013) Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem 85(12):5810–5818. https://doi.org/10.1021/ac400486u

    Article  CAS  Google Scholar 

  124. Mette B, Dawei R, Thomas B, Soren JS (2014) Interactions in multispecies biofilm: do they actually matter? Trends Microbiol 22(2):84–91

    Article  CAS  Google Scholar 

  125. Mohamed HEA, Afridi S, Khalil AT, Ali M, Zohra T, Akhtar R, Ikram A, Shinwari ZK, Maaza M (2020) Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine (Lond.) 15(5):467–488

    Article  CAS  Google Scholar 

  126. Mohana S, Sumathi S (2020) Multi-functional biological effects of palladium nanoparticles synthesized using Agaricus bisporus. J Clust Sci 31:391–400. https://doi.org/10.1007/s10876-019-01652-2

    Article  CAS  Google Scholar 

  127. Moradpoor H, Safaei M, Rezaei F, Golshah A, Jamshidy L, Hatam R, Abdullah RS (2019) Optimisation of cobalt oxide nanoparticles synthesis as bactericidal agents. Macedonian J Med Sci 7(17):2757–2762. https://doi.org/10.3889/oamjms.2019.747

    Article  Google Scholar 

  128. Moulavi P, Noorbazargan H, Dolatabadi A, Foroohimanjili F, Tavakoli Z, Mirzazadeh S, Hashem M, Ashrafi F (2019) Antibiofilm effect of green engineered silver nanoparticles fabricated from Artemisia scoporia extract on the expression of icaA and icaR genes against multi drug resistant Staphylococcus aureus. J Basic Microbiol 59:701–712

    Article  CAS  Google Scholar 

  129. Moura MC, Pontual EV, Paiva PMG, Coelho LCBB (2013) An outline to corrosive bacteria. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex, Badajoz, pp 11–22

    Google Scholar 

  130. Muthuvel A, Jothibas M, Mohana V, Manoharan C (2020) Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg Chem Commun 119: https://doi.org/10.1016/j.inoche.2020.108086

    Article  CAS  Google Scholar 

  131. Muzammil S, Khurshid M, Nawaz I, Siddique MH, Zubair M, Nisar MA, Imran M, Hayat S (2020) Aluminium oxide nanoparticles inhibit EPS production, adhesion and biofilm formation by multidrug resistant Acinetobacter baumannii. Biofouling 36(4):492–504. https://doi.org/10.1080/08927014.2020.1776856

    Article  CAS  Google Scholar 

  132. Naik K, Kowshik M (2014) Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. J Appl Microbiol 117:972–983. https://doi.org/10.1111/jam.12589

    Article  CAS  Google Scholar 

  133. Noori AJ, Kareem FA (2019) The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon 5: https://doi.org/10.1016/j.heliyon.2019.e02568

    Article  Google Scholar 

  134. Obeizi Z, Benbouzid H, Ouchenane S, Yılmaz D, Culha M, Bououdina M (2020) Biosynthesis of zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Mater Today Commun 25:101553. https://doi.org/10.1016/j.mtcomm.2020.101553

    Article  CAS  Google Scholar 

  135. Omran BA, Nassar HN, Younis SA, El-Salamony RA, Fatthallah NA, Hamdy A, El-Shatoury EH, El-Gendy NSh (2019) Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404—optimization, characterization and antimicrobial activity. J Appl Microbiol 128:438–457. https://doi.org/10.1111/jam.14498

    Article  CAS  Google Scholar 

  136. Osonga FJ, Kalra S, Miller RM, Isika D, Sadik OA (2020) Synthesis, c haracterization and antifungal activities of eco-friendly palladium nanoparticles. RSC Adv 10:5894–5904. https://doi.org/10.1039/c9ra07800b

    Article  CAS  Google Scholar 

  137. Ouyang K, Mortimer M, Holden PA, Cai P, Wu Y, Gao C, Huang Q (2020) Towards a better understanding of Pseudomonas putida biofilm formation in the presence of ZnO nanoparticles (NPs): role of NP concentration. Environ Int 137: https://doi.org/10.1016/j.envint.2020.105485

    Article  CAS  Google Scholar 

  138. Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol, B 190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014

    Article  CAS  Google Scholar 

  139. Punniyakotti P, Panneerselvam P, Perumal D, Aruliah R, Angaiah S (2020) Anti- bacterial and anti-biofilm properties of green synthesized coppernanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess Biosyst Eng 43:1649–1657. https://doi.org/10.1007/s00449-020-02357-x

    Article  CAS  Google Scholar 

  140. Qais FA, Shafiq A, Ahmad I, Husain FM, Khan RA, Hassan I (2020) Green synthesis of silver nanoparticles using Carum copticum: assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb Pathog 144: https://doi.org/10.1016/j.micpath.2020.104172

    Article  CAS  Google Scholar 

  141. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B 102:300–306. https://doi.org/10.1016/j.colsurfb.2012.07.039

    Article  CAS  Google Scholar 

  142. Rahul B, Shaily MB, Brajendra M, David LO (2010) Microbiologically influenced corrosion and its mitigation. Mater Sci Res India 7(2):407–412

    Article  Google Scholar 

  143. Rajivgandhi GN, Ramachandran G, Maruthupandy M, Manoharan N, Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Li W-J (2020) Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae. Colloids Surf A 600: https://doi.org/10.1016/j.colsurfa.2020.124830

    Article  CAS  Google Scholar 

  144. Rajkumari J, Magdalane CM, Siddhardha B, Madhaven J, Ramalingam G, Al-Dhabi NA, Arasu MV, Ghilan AKM, Duraipandiayan V, Kaviyarasu K (2019) Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J Photochem Photobiol, B 201: https://doi.org/10.1016/j.jphotobiol.2019.111667

    Article  CAS  Google Scholar 

  145. Rasheed PA, Jabbar KA, Mackey HR, Mahmoud KA (2019) Recent advancements in nanomaterials as coatings and biocides for the inhibition of sulphate reducing bacteria induced corrosion. Curr Opin Chem Eng 25:35–42

    Article  Google Scholar 

  146. Rasheed PA, Jabbar KA, Rasool K, Pandey RP, Sliem MH, Helal M, Samara A, Abdullah AM, Mahmoud KA (2019) Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco- friendly biocide. Corros Sci 148:397–406. https://doi.org/10.1016/j.corsci.2018.12.028

    Article  CAS  Google Scholar 

  147. Renxing L, Deniz FA, Egemen A, Vincentt B, Jan S, Joseph MS (2016) Marine environments. Environ Sci Technol 50(9):4844–4853

    CAS  Google Scholar 

  148. Salam FD, Vinita MN, Puja P, Prakash S, Yuvakkumar R, Kumar P (2020) Anti-bacterial and anti-biofilm efficacies of bioinspired gold nanoparticles. Mater Lett 261: https://doi.org/10.1016/j.matlet.2019.126998

    Article  CAS  Google Scholar 

  149. Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J (2017) Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog 111:375–387. https://doi.org/10.1016/j.micpath.2017.09.019

    Article  CAS  Google Scholar 

  150. Saleh NB, Chambers B, Aich N, Plazas-Tuttle J, Phung-Ngoc HN, Kirisits MJ (2015) Mechanisticles on learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials andbiofilm bacteria. Front Microbiol 6:677. https://doi.org/10.3389/fmicb.2015.00677

    Article  Google Scholar 

  151. Saleh MM, Sadeq RA, Abdel Latif HK, Abbas HA, Askoura M (2019) Zinc oxide nanoparticles inhibits quorum sensing and virulence in Pseudomonas aeruginosa. Afri Health Sci 19(2):2043–2055. https://doi.org/10.4314/ahs.v19i2.28

    Article  Google Scholar 

  152. Samanta S, Singh BR, Adholeya A (2017) Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain EM-1083 of laccaria fraternal and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian J Microbiol 57(4):448–460. https://doi.org/10.1007/s12088-017-0662-4

    Article  CAS  Google Scholar 

  153. Samanta A, Podder S, Kumarasamy M, Ghosh CK, Lahiri D, Roy P, Bhattacharjee G et al (2019) Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities. Mater Sci Eng, C 103:109734. https://doi.org/10.1016/j.msec.2019.05.019

    Article  CAS  Google Scholar 

  154. Satpathy G, Manikandan E (2019) Cobalt nanoparticle as the antibacterial tool in vitro. Int J Eng Adv Technol 8(6):3684–3687. https://doi.org/10.35940/ijeat.F9374.088619

    Article  Google Scholar 

  155. Sathyanarayanan MB, Balachandranath R, Srinivasulu YG, Kannaiyan SK, Subbiahdoss G (2013) The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol. https://doi.org/10.1155/2013/272086

    Article  Google Scholar 

  156. Sengan M, Subramaniyan SB, Prakash SA, Kamlekar R, Veerappan A (2019) Effective elimination of biofilm formed with waterborne pathogens using copper nanoparticles. Microb Pathog 127:341–346. https://doi.org/10.1016/j.micpath.2018.12.025

    Article  CAS  Google Scholar 

  157. Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S (2019) Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogenPseudomonas aeruginosa. Biofouling 35(1):34–49. https://doi.org/10.1080/08927014.2018.1563686

    Article  CAS  Google Scholar 

  158. Sharma KD (2017) Antibacterial activity of biogenic platinum nanoparticles: an in vitro study. Int J Curr Microbiol Appl Sci 6(2):801–808

    Article  CAS  Google Scholar 

  159. Sharmila G, Fathima MF, Haries S, Geetha S, Kumar NM, Muthukumaran C (2017) Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. J Mol Struct 1138:35–40. https://doi.org/10.1016/j.molstruc.2017.02.097

    Article  CAS  Google Scholar 

  160. Sheikh S, Tale V (2017) Green synthesis of silver nanoparticles: its effect on quorum sensing inhibition of urinary tract infection pathogens. Asian J Pharm Clin Res 10(5):302–305. https://doi.org/10.22159/ajpcr.2017.v10i5.16949

    Article  CAS  Google Scholar 

  161. Sillankorva S, Azeredo J (2014) Bacteriophage attack as an anti-biofilm strategy. In: Donelli G (ed) Microbial biofilms. Methods in molecular biology (methods and protocols). Humana Press, New York

    Google Scholar 

  162. Singh P (2016) Biosynthesis of titanium dioxide nanoparticles and their antibacterial property. Int J Chem Mol Eng 10(2):275–278

    Google Scholar 

  163. Singh BR, Singh BN, Singh A, Khan W et al (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719. https://doi.org/10.1038/srep13719

    Article  Google Scholar 

  164. Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VRSS, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I (2018) Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomed 13:3571–3591

    Article  CAS  Google Scholar 

  165. Singh RK, Behera SS, Singh KR, Mishra S, Panigrahi B, Sahoo TR, Parhi PK, Mandal D (2020) Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. J Photochem Photobiol, A 400: https://doi.org/10.1016/j.jphotochem.2020.112704

    Article  CAS  Google Scholar 

  166. Smirnov NA, Kudryashov SI, Nastulyavichus AA, Rudenko AA, Saraeva IN, Tolordava ER, Gonchukov SA, Romanova YM, Ionin AA, Zayarny DA (2018) Antibacterial properties of silicon nanoparticles. Laser Phys Lett 15:105602. https://doi.org/10.1088/1612-202X/aad853

    Article  Google Scholar 

  167. Soliman H, Elsayed A, Dyaa A (2018) Antimicrobial activity of silver nanoparticles biosynthesized by Rhodotorula sp. Strain ATL72. Egypt J Basic Appl Sci 5:228–233

    Article  Google Scholar 

  168. Srinivasan R, Vigneshwari L, Rajavel T, Durgadevi R, Kannappan A, Balamurugan K, Devi KP, Ravi AV (2018) Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environ Sci Pollut Res 25:10538–10554. https://doi.org/10.1007/s11356-017-1049-0

    Article  CAS  Google Scholar 

  169. Sunderam V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A (2019) In-vitro antimicrobial and anticancer properties of green synthesizedgold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci 26:455–459. https://doi.org/10.1016/j.sjbs.2018.12.001

    Article  CAS  Google Scholar 

  170. Surendra TV, Roopan SM (2016) Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J Photochem Photobiol, B 161:122–128. https://doi.org/10.1016/j.jphotobiol.2016.05.019

    Article  CAS  Google Scholar 

  171. Surendra TV, Roopan SM, Arasu MV, Al-Dhabi NA, Rayalu GM (2016) RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J Photochem Photobiol, B 162:550–557. https://doi.org/10.1016/j.jphotobiol.2016.07.032

    Article  CAS  Google Scholar 

  172. Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI (2018) Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract andits antimicrobial as well as anticancer activity. Adv Powder Technol 29:1685–1694. https://doi.org/10.1016/j.apt.2018.04.003

    Article  CAS  Google Scholar 

  173. Thoker BA, Bhat AA, Wani AK, Kaloo MA, Shergojri GA (2020) Preparation and characterization of SnO2 nanoparticles for antibacterial properties. Nanomaterial Chem Technol 2(1):1–5. https://doi.org/10.33805/2690-2575.109

    Article  Google Scholar 

  174. Thomas KW, Seok H, Qun M (2011) Engineering biofilm formation and dispersal. Trends Biotechnol 29(2):87–94

    Article  CAS  Google Scholar 

  175. Thukkaram M, Sitaram S, Kannaiyan SK, Subbiahdoss G (2014) Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. Int J Biomater. https://doi.org/10.1155/2014/716080

    Article  Google Scholar 

  176. Tiwari A, Sherpa YL, Pathak AP, Singh LS, Gupta A, Tripathi A (2019) One- pot green synthesis of highly luminescent silicon nanoparticles using Citrus limon (L.) and their applications in luminescent cell imaging and antimicrobial efficacy. Mater Today Commun 19:62–67. https://doi.org/10.1016/j.mtcomm.2018.12.005

    Article  CAS  Google Scholar 

  177. Vahedi M, Hosseini-Jazani N, Yousefi S, Ghahremani M (2017) Evaluation of anti- bacterial effects of nickel nanoparticles on biofilmproduction by Staphylococcus epidermidis. Iran J Microbiol 9(3):160–168

    Google Scholar 

  178. Vazquez-Munoz R, Arellano-Jimenez MJ, Lopez-Ribot J (2020) Bismuth nanoparticles obtained by a facilesynthesis method exhibit antimicrobialactivity against Staphylococcus aureus andCandida albicans. BMC Biomed Eng 2:11. https://doi.org/10.1186/s42490-020-00044-2

    Article  Google Scholar 

  179. Vidhu VD, Philip D (2015) Biogenic synthesis of SnO2 nanoparticles: evaluation of antibacterial and antioxidant activities. Spectrochim Acta Part A Mol Biomol Spectrosc 134:372–379. https://doi.org/10.1016/j.saa.2014.06.131

    Article  CAS  Google Scholar 

  180. Vijayakumar S, Malaikozhundan B, Saravanakumar K, Duran-Lara EF, Wang M-H, Vaseeharan K (2019) Garlic clove extract assisted silver nanoparticle – antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol, B 198:111558. https://doi.org/10.1016/j.jphotobiol.2019.111558

    Article  CAS  Google Scholar 

  181. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta Part A Mol Biomol Spectrosc 137:886–891. https://doi.org/10.1016/j.saa.2014.08.064

    Article  CAS  Google Scholar 

  182. Vijayan SR, Santhiyagu P, Singamuthu M, Ahila NK, Jayaraman R, Ethiraj K (2014) Synthesis and characterization of silver and goldnanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J. https://doi.org/10.1155/2014/938272

    Article  Google Scholar 

  183. Vinotha V, Iswarya A, Thaya R, Govindarajan M, Alharbi Ns, Kadaikunnan S, Khaled Jm, Al-Anbr Mn, Vaseeharan B (2019) Synthesis of zno nanoparticles using insulin-rich leaf extract: anti-diabetic, antibiofilm and anti-oxidant properties. J Photochem Photobiol, B 197:11541. https://doi.org/10.1016/J.Jphotobiol.2019.111541

    Article  Google Scholar 

  184. Wei L, Ding J, Xue M, Qin K, Wang S, Xin M, Jiang J, Zhao Q (2019) Adsorption mechanism of ZnO and CuO nanoparticles on two typicalsludge EPS: effect of nanoparticle diameter and fractional EPS polarity on binding. Chemosphere 214:210–219. https://doi.org/10.1016/j.chemosphere.2018.09.093

    Article  CAS  Google Scholar 

  185. Wernicki A, Puchalski A, Urban-chmiel R, Dec M, Stęgierska D, Dudzic A, Wójcik A (2014) Antimicrobial properties of gold, silver, copper andplatinum nanoparticles against selected microorganismsisolated from cases of mastitis in cattle. Med Weter 70(9):564–567

    Google Scholar 

  186. Xu Y, Wang C, Hou J, Dai S, Wang P, Miao L, Lv B, Yang Y, You G (2016) Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Sci Total Environ 544:230–237. https://doi.org/10.1016/j.scitotenv.2015.11.130

    Article  CAS  Google Scholar 

  187. Yun-Seok C, Jay JO, Kye-Heon O (2010) Antimicrobial activity and biofilm formation inhibition of green tea polyphenols on human teeth. Biotechnol Bioprocess Eng 15:359–364

    Article  CAS  Google Scholar 

  188. Zaib M, Shahzadi T, Muzammal I, Farooq U (2020) Catharanthus roseus extract mediated synthesis of cobalt nanoparticles: evaluation of antioxidant, antibacterial, hemolytic and catalytic activities. Inorg Nano-metal Chem 50(11):1171–1180. https://doi.org/10.1080/24701556.2020.1737819

    Article  CAS  Google Scholar 

  189. Zakaria BS, Dhar BR (2020) Changes in syntrophic microbial communities, EPS matrix, and gene expression patterns in biofilm anode in response to silver nanoparticles exposure. Sci Total Environ 734: https://doi.org/10.1016/j.scitotenv.2020.139395

    Article  CAS  Google Scholar 

  190. Zarasvand KA, Rai VR (2016) Inhibition of a sulfate reducing bacterium, Desulfovibrio marinisediminis GSR3, by biosynthesized copper oxideNanoparticles. Biotech 6:84. https://doi.org/10.1007/s13205-016-0403-0

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

CE conducted the search, extracted the data and drafted manuscript. ANE and KME conducted the search and reviewed the draft manuscript. OEO reviewed the draft manuscripts and certified final manuscript. This is a concise article on biocorrosion challenges and the prospects of MMO NPs as promising biocorrosion inhibitors.

Corresponding author

Correspondence to Orish E. Orisakwe.

Ethics declarations

Conflict of interest

This review was carried out without any commercial or financial relationships among the authors that could lead to any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejileugha, C., Ezealisiji, K.M., Ezejiofor, A.N. et al. Microbiologically Influenced Corrosion: Uncovering Mechanisms and Discovering Inhibitor—Metal and Metal Oxide Nanoparticles as Promising Biocorrosion Inhibitors. J Bio Tribo Corros 7, 109 (2021). https://doi.org/10.1007/s40735-021-00545-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-021-00545-0

Keywords

Navigation