Skip to main content
Log in

Human Group Choice in Loss Minimization and Gain Maximization Games

  • ORIGINAL ARTICLE
  • Published:
The Psychological Record Aims and scope Submit manuscript

Abstract

College students participated as a group in a point-loss minimization game as well as in a point-gain maximization game. The rule of the maximization game was similar to that in previous studies of human group choice (e.g., Kraft and Baum Journal of the Experimental Analysis of Behavior, 76, 21–42, 2001). In particular, each participant in the maximization game could earn points by choosing 1 of 2 colors (red or blue). A certain number of points were allocated to each color, and the participant shared the points with the other people who chose the same color. In the minimization game, on the other hand, each of the participants had 3,000 points at the beginning of the game, and the goal was to minimize the point loss: The amount of points to be lost in each trial was computed by multiplying the points allocated to the chosen color by the number of people who chose that color. The ideal distribution of participants was observed not only in the maximization game but also in the minimization game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baum, W. M. (1974). On two types of deviation from the matching law: bias and undermatching. Journal of the Experimental Analysis of Behavior, 22, 231–242. doi:10.1901/jeab.1974.22-231.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baum, W. M. (1979). Matching, undermatching, and overmatching in studies of choice. Journal of the Experimental Analysis of Behavior, 32, 269–281. doi:10.1901/jeab.1979.32-269.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baum, W. M., & Kraft, J. R. (1998). Group choice: competition, travel, and the ideal free distribution. Journal of the Experimental Analysis of Behavior, 69, 227–245. doi:10.1901/jeab.1998.69-227.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bertram, B. C. R. (1978). Living in groups: Predators and prey. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (pp. 64–96). Oxford: Blackwell.

    Google Scholar 

  • Fagen, R. (1987). A generalized habitat matching rule. Evolutionary Ecology, 1, 5–10. doi:10.1007/BF02067264.

    Article  Google Scholar 

  • Fishburn, P. C., & Kochenberger, G. (1979). Two-piece von Neumann-Morgenstein utility functions. Decision Sciences, 10, 503–518. doi:10.1111/j.1540-5915.1979.tb00043.x.

    Article  Google Scholar 

  • Fretwell, S. D., & Lucas, H. L., Jr. (1970). On territorial behavior and other factors influencing habitat distribution in birds: I. Theoretical development. Acta Biotheoretica, 19, 16–36. doi:10.1007/BF01601953.

    Article  Google Scholar 

  • Galanter, E., & Pliner, P. (1974). Cross-modality matching of money against other continua. In H. R. Moskowitz, B. Scharf, & J. C. Stevens (Eds.), Sensation and measurement: Papers in honor of S. S. Stevens (pp. 65–76). Dordrecht: Reidel. doi:10.1007/978-94-010-2245-3_6.

    Chapter  Google Scholar 

  • Goldstone, R. L., & Ashpole, B. C. (2004). Human foraging behavior in a virtual environment. Psychonomic Bulletin & Review, 11, 508–514. doi:10.3758/BF03196603.

    Article  Google Scholar 

  • Goldstone, R. L., Ashpole, B., & Roberts, M. E. (2005). Knowledge of resources and competitors in human foraging. Psychonomic Bulletin & Review, 12, 81–87. doi:10.3758/BF03196350.

    Article  Google Scholar 

  • Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272. doi:10.1901/jeab.1961.4-267.

    Article  PubMed Central  PubMed  Google Scholar 

  • Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental Analysis of Behavior, 13, 243–266. doi:10.1901/jeab.1970.13-243.

    Article  PubMed Central  PubMed  Google Scholar 

  • Houston, A. I. (2008). Matching and ideal free distributions. Oikos, 117, 978–983. doi:10.1111/j.0030-1299.2008.16041.x.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291. doi:10.2307/1914185.

    Article  Google Scholar 

  • Kennedy, M., & Gray, R. D. (1993). Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution. Oikos, 68, 158–166. doi:10.2307/3545322.

    Article  Google Scholar 

  • Kraft, J. R., & Baum, W. M. (2001). Group choice: the ideal free distribution of human social behavior. Journal of the Experimental Analysis of Behavior, 76, 21–42. doi:10.1901/jeab.2001.76-21.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kraft, J. R., Baum, W. M., & Burge, M. J. (2002). Group choice and individual choices: modeling human social behavior with the ideal free distribution. Behavioural Processes, 57, 227–240. doi:10.1016/S0376-6357(02)00016-5.

    Article  PubMed  Google Scholar 

  • Madden, G. J., Peden, B. F., & Yamaguchi, T. (2002). Human group choice: discrete-trial and free-operant tests of the ideal free distribution. Journal of the Experimental Analysis of Behavior, 78, 1–15. doi:10.1901/jeab.2002.78-1.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pulliam, H. R., & Caraco, T. (1984). Living in groups: Is there an optimal group size? In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (2nd ed., pp. 122–147). Oxford: Blackwell.

    Google Scholar 

  • Roberts, M. E., & Goldstone, R. L. (2009). Sub-optimalities in group foraging and resource competition. Proceedings of the 31st Annual Conference of the Cognitive Science Society, 2371–2377.

  • Sokolowski, M. B. C., Tonneau, F., & Baqué, E. F. (1999). The ideal free distribution in humans: an experimental test. Psychonomic Bulletin & Review, 6, 157–161. doi:10.3758/BF03210824.

    Article  Google Scholar 

  • Urata, T., Shiota, T., & Nakajima, S. (2003). The ideal free distribution in human group choice and between-trial switching behavior of the individual participants. Proceedings of the 21st Annual Convention of the Japanese Association for Behavior Analysis, p. 42.

  • Yamaguchi, T., & Ito, M. (2006). An experimental test of the ideal free distribution in humans: the effects of reinforcer magnitude and group size. Japanese Journal of Psychology, 76, 547–553. doi:10.4992/jjpsy.76.547.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The first author designed and supervised the experimentation, reanalyzed the data, and prepared the manuscript with a grant from the MEXT (Ministry of Culture, Sports, Science and Technology, Japan) for Strategic Formation of Research Bases at Private Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadahiko Nakajima.

Additional information

Experiments 1 and 2 were based on graduation theses submitted in 2010 and 2011 by the second and third authors, respectively, to Kwansei Gakuin University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, S., Suzuki, C. & Hirata, K. Human Group Choice in Loss Minimization and Gain Maximization Games. Psychol Rec 64, 63–69 (2014). https://doi.org/10.1007/s40732-014-0014-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40732-014-0014-2

Keywords

Navigation