Skip to main content
Log in

Metabolomics Application in Understanding the Link Between Air Pollution and Infant Health Outcomes: A Narrative Review

  • REVIEW
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Air pollution and the various chemicals that are a part of this complex mixture have been associated with several adverse infant health outcomes. One major area of research is describing the underlying biological mechanism between air pollution and adverse infant health outcomes. Metabolomics, a new omics field, studies small molecules present in a biological matrix and may provide insight into underlying biological mechanism. We conducted a narrative review of the literature to identify studies utilizing metabolomics with air pollution, or some potential component of it, and adverse infant health. We identified seven studies that met our inclusion criteria. These studies described a range of potential air pollutants including tobacco smoke, PAH, NO2, PM2.5, O3, BC, heavy metals, and PFAS. The studies mainly focused on gestational age and weight outcomes. Metabolic analysis revealed many altered metabolomic pathways including those related to amino acid metabolism, glycan metabolism, lipid metabolism, and cofactor and vitamin metabolism. These studies provide valuable insight into the potential biological mechanisms that underpin the association between air pollution and adverse gestational outcomes. Future studies should utilize longitudinal study design and use complex mixture analysis for air pollution exposure assessment, as well as focus on the use of more toxicologically relevant target tissue for infant health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data were abstracted from seven published articles. Abstracted data are available upon request or can be abstracted directly from these seven published studies (see Table 1).

References

  1. Bourdrel T, Bind MA, Béjot Y, Morel O, Argacha JF. Cardiovascular effects of air pollution. Arch Cardiovasc Dis. 2017;110(11):634–42. https://doi.org/10.1016/j.acvd.2017.05.003.

    Article  Google Scholar 

  2. CDC. Air pollutants. Centers for Disease Control and Prevention. https://www.cdc.gov/air/pollutants.htm

  3. Polivka BJ. The Great London Smog of 1952. Am J Nurs. 2018;118(4):57–61. https://doi.org/10.1097/01.NAJ.0000532078.72372.c3.

    Article  Google Scholar 

  4. Checa Vizcaíno MA, González-Comadran M, Jacquemin B. Outdoor air pollution and human infertility: a systematic review. Fertil Steril. 2016;106(4):897-904.e1. https://doi.org/10.1016/j.fertnstert.2016.07.1110.

    Article  CAS  Google Scholar 

  5. Gaskins AJ, Mínguez-Alarcón L, Fong KC, et al. Exposure to fine particulate matter and ovarian reserve among women from a fertility clinic. Epidemiology. 2019;30(4):486–91. https://doi.org/10.1097/ede.0000000000001029.

    Article  Google Scholar 

  6. Liang W, Zhu H, Xu J, et al. Ambient air pollution and gestational diabetes mellitus: an updated systematic review and meta-analysis. Ecotoxicol Environ Saf. 2023;255.

    Article  CAS  Google Scholar 

  7. Guo C, Qian Y, Xu R, et al. Exposure to ambient air pollution from the preconceptional period and risk of gestational hypertension. Sci Total Environ. 2023;885.

    Article  CAS  Google Scholar 

  8. Zhu W, Zheng H, Liu J, et al. The correlation between chronic exposure to particulate matter and spontaneous abortion: a meta-analysis. Chemosphere. 2022;286(Pt 2): 131802. https://doi.org/10.1016/j.chemosphere.2021.131802.

    Article  CAS  Google Scholar 

  9. Liu J, Chen Y, Liu D, et al. Prenatal exposure to particulate matter and term low birth weight: systematic review and meta-analysis. Environ Sci Pollut Res Int. 2023;30(23):63335–46. https://doi.org/10.1007/s11356-023-26831-7.

    Article  CAS  Google Scholar 

  10. Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. Environ Res. 2012;117:100–11. https://doi.org/10.1016/j.envres.2012.05.007.

    Article  CAS  Google Scholar 

  11. Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612–6. https://doi.org/10.1136/oem.60.8.612.

    Article  Google Scholar 

  12. Gaskins AJ, Tang Z, Hood RB, et al. Periconception air pollution, metabolomic biomarkers, and fertility among women undergoing assisted reproduction. Environ Int. 2021;155.

    Article  CAS  Google Scholar 

  13. Boamah-Kaali E, Jack DW, Ae-Ngibise KA, et al. Prenatal and postnatal household air pollution exposure and infant growth trajectories: evidence from a rural Ghanaian pregnancy cohort. Environ Health Perspect. 2021;129(11): 117009. https://doi.org/10.1289/ehp8109.

    Article  CAS  Google Scholar 

  14. Clasen TF, Chang HH, Thompson LM, et al. Liquefied petroleum gas or biomass for cooking and effects on birth weight. N Engl J Med. 2022;387(19):1735–46. https://doi.org/10.1056/NEJMoa2206734.

    Article  CAS  Google Scholar 

  15. Barn P, Gombojav E, Ochir C, et al. The effect of portable HEPA filter air cleaner use during pregnancy on fetal growth: the UGAAR randomized controlled trial. Environ Int. 2018;121(Pt 1):981–9. https://doi.org/10.1016/j.envint.2018.08.036.

    Article  CAS  Google Scholar 

  16. Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9. https://doi.org/10.1080/004982599238047.

    Article  CAS  Google Scholar 

  17. Liang D, Li Z, Vlaanderen J, et al. A state-of-the-science review on high-resolution metabolomics application in air pollution health research: current progress, analytical challenges, and recommendations for future direction. Environ Health Perspect. 2023;131(5):56002. https://doi.org/10.1289/ehp11851.

    Article  CAS  Google Scholar 

  18. Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3(3):211–21. https://doi.org/10.1007/s11306-007-0082-2.

    Article  CAS  Google Scholar 

  19. Li Y, Xiao N, Liu M, et al. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. Environ Pollut. 2023;330. https://doi.org/10.1016/j.envpol.2023.121730.

    Article  Google Scholar 

  20. Prince N, Begum S, Mínguez-Alarcón L, et al. Plasma concentrations of per- and polyfluoroalkyl substances are associated with perturbations in lipid and amino acid metabolism. Chemosphere. 2023;324: 138228. https://doi.org/10.1016/j.chemosphere.2023.138228.

    Article  CAS  Google Scholar 

  21. Walker DI, Marder ME, Yano Y, et al. Multigenerational metabolic profiling in the Michigan PBB registry. Environ Res. 2019;172:182–93. https://doi.org/10.1016/j.envres.2019.02.018.

    Article  CAS  Google Scholar 

  22. Hood RB, Liang D, Chiu YH, et al. Pesticide residue intake from fruits and vegetables and alterations in the serum metabolome of women undergoing infertility treatment. Environ Int. 2022;160: 107061. https://doi.org/10.1016/j.envint.2021.107061.

    Article  CAS  Google Scholar 

  23. Chen M, Guan Y, Huang R, et al. Associations between the maternal exposome and metabolome during pregnancy. Environ Health Perspect. 2022;130(3):37003. https://doi.org/10.1289/ehp9745.

    Article  CAS  Google Scholar 

  24. Salihu HM, Wilson RE. Epidemiology of prenatal smoking and perinatal outcomes. Early Hum Dev. 2007;83(11):713–20. https://doi.org/10.1016/j.earlhumdev.2007.08.002.

    Article  CAS  Google Scholar 

  25. Jovandaric MZ, Babic S, Raus M, Medjo B. The importance of metabolic and environmental factors in the occurrence of oxidative stress during pregnancy. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241511964.

    Article  Google Scholar 

  26. Pereira B, Figueiredo B, Pinto TM, Míguez MC. Effects of tobacco consumption and anxiety or depression during pregnancy on maternal and neonatal health. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17218138.

    Article  Google Scholar 

  27. Tan Y, Barr DB, Ryan PB, et al. High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort. Environ Pollut. 2022;292.

    Article  CAS  Google Scholar 

  28. Chadeau-Hyam M, Athersuch TJ, Keun HC, et al. Meeting-in-the-middle using metabolic profiling - a strategy for the identification of intermediate biomarkers in cohort studies. Biomarkers. 2011;16(1):83–8. https://doi.org/10.3109/1354750x.2010.533285.

    Article  CAS  Google Scholar 

  29. Vineis P, Demetriou CA, Probst-Hensch N. Long-term effects of air pollution: an exposome meet-in-the-middle approach. Int J Public Health. 2020;65(2):125–7. https://doi.org/10.1007/s00038-019-01329-7.

    Article  Google Scholar 

  30. Agarwal P, Singh L, Anand M, Taneja A. Association between placental polycyclic aromatic hydrocarbons (PAHS), oxidative stress, and preterm delivery: a case-control study. Arch Environ Contam Toxicol. 2018;74(2):218–27. https://doi.org/10.1007/s00244-017-0455-0.

    Article  CAS  Google Scholar 

  31. Duarte-Salles T, Mendez MA, Meltzer HM, Alexander J, Haugen M. Dietary benzo(a)pyrene intake during pregnancy and birth weight: associations modified by vitamin C intakes in the Norwegian mother and child cohort study (MoBa). Environ Int. 2013;60:217–23. https://doi.org/10.1016/j.envint.2013.08.016.

    Article  CAS  Google Scholar 

  32. Langlois PH, Hoyt AT, Desrosiers TA, et al. Maternal occupational exposure to polycyclic aromatic hydrocarbons and small for gestational age offspring. Occup Environ Med. 2014;71(8):529–35. https://doi.org/10.1136/oemed-2013-101833.

    Article  Google Scholar 

  33. Padula AM, Noth EM, Hammond SK, et al. Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environ Res. 2014;135:221–6. https://doi.org/10.1016/j.envres.2014.09.014.

    Article  CAS  Google Scholar 

  34. Porpora MG, Piacenti I, Scaramuzzino S, Masciullo L, Rech F, Benedetti Panici P. Environmental contaminants exposure and preterm birth: a systematic review. Toxics. 2019. https://doi.org/10.3390/toxics7010011.

    Article  Google Scholar 

  35. Rennie MY, Detmar J, Whiteley KJ, et al. Vessel tortuousity and reduced vascularization in the fetoplacental arterial tree after maternal exposure to polycyclic aromatic hydrocarbons. Am J Physiol Heart Circ Physiol. 2011;300(2):H675–84. https://doi.org/10.1152/ajpheart.00510.2010.

    Article  CAS  Google Scholar 

  36. Choi H, Rauh V, Garfinkel R, Tu Y, Perera FP. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction. Environ Health Perspect. 2008;116(5):658–65. https://doi.org/10.1289/ehp.10958.

    Article  CAS  Google Scholar 

  37. Suter MA, Aagaard KM, Coarfa C, et al. Association between elevated placental polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts from Superfund sites in Harris County, and increased risk of preterm birth (PTB). Biochem Biophys Res Commun. 2019;516(2):344–9. https://doi.org/10.1016/j.bbrc.2019.06.049.

    Article  CAS  Google Scholar 

  38. Wang L, Guo P, Tong H, et al. Traffic-related metrics and adverse birth outcomes: a systematic review and meta-analysis. Environ Res. 2020;188: 109752. https://doi.org/10.1016/j.envres.2020.109752.

    Article  CAS  Google Scholar 

  39. Kloog I, Chudnovsky AA, Just AC, et al. A new hybrid spatio-temporal model for estimating daily multi-year PM(2.5) concentrations across Northeastern USA using high resolution aerosol optical depth data. Atmos Environ (1994). 2014;95:581–90. https://doi.org/10.1016/j.atmosenv.2014.07.014.

    Article  CAS  Google Scholar 

  40. Lee HJ, Koutrakis P. Daily ambient NO2 concentration predictions using satellite ozone monitoring instrument NO2 data and land use regression. Environ Sci Technol. 2014;48(4):2305–11. https://doi.org/10.1021/es404845f.

    Article  CAS  Google Scholar 

  41. Di Q, Rowland S, Koutrakis P, Schwartz J. A hybrid model for spatially and temporally resolved ozone exposures in the continental United States. J Air Waste Manag Assoc. 2017;67(1):39–52. https://doi.org/10.1080/10962247.2016.1200159.

    Article  CAS  Google Scholar 

  42. Abu Awad Y, Koutrakis P, Coull BA, Schwartz J. A spatio-temporal prediction model based on support vector machine regression: ambient black carbon in three New England States. Environ Res. 2017;159:427–34. https://doi.org/10.1016/j.envres.2017.08.039.

    Article  CAS  Google Scholar 

  43. Dettwiler M, Flynn AC, Rigutto-Farebrother J. Effects of non-essential “toxic” trace elements on pregnancy outcomes: a narrative overview of recent literature syntheses. Int J Environ Res Public Health. 2023. https://doi.org/10.3390/ijerph20085536.

    Article  Google Scholar 

  44. Heng YY, Asad I, Coleman B, et al. Heavy metals and neurodevelopment of children in low and middle-income countries: a systematic review. PLoS ONE. 2022;17(3): e0265536. https://doi.org/10.1371/journal.pone.0265536.

    Article  CAS  Google Scholar 

  45. Zhao S, Yang X, Xu Q, et al. Association of maternal metals exposure, metabolites and birth outcomes in newborns: a prospective cohort study. Environ Int. 2023;179: 108183. https://doi.org/10.1016/j.envint.2023.108183.

    Article  CAS  Google Scholar 

  46. Mitrovic-Jovanovic A, Dragojevic-Dikic S, Zamurovic M, et al. Comparison of electrolytic status (Na+, K+, Ca2+, Mg2+) in preterm and term deliveries. Clin Exp Obstet Gynecol. 2012;39(4):479–82.

    CAS  Google Scholar 

  47. Tarannum F, Faizuddin M, Madaiah H. Gingival crevicular fluid prostaglandin E2 level as a predictor of preterm low birth weight: a pilot investigation. J Oral Sci. 2011;53(3):293–300. https://doi.org/10.2334/josnusd.53.293.

    Article  CAS  Google Scholar 

  48. Laine JE, Bailey KA, Rubio-Andrade M, et al. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers Of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect. 2015;123(2):186–92. https://doi.org/10.1289/ehp.1307476.

    Article  Google Scholar 

  49. Maitre L, Fthenou E, Athersuch T, et al. Urinary metabolic profiles in early pregnancy are associated with preterm birth and fetal growth restriction in the Rhea mother-child cohort study. BMC Med. 2014. https://doi.org/10.1186/1741-7015-12-110.

    Article  Google Scholar 

  50. Bell ML, Belanger K, Ebisu K, Gent JF, Leaderer BP. Relationship between birth weight and exposure to airborne fine particulate potassium and titanium during gestation. Environ Res. 2012;117:83–9. https://doi.org/10.1016/j.envres.2012.05.004.

    Article  CAS  Google Scholar 

  51. Liu C, Luo D, Wang Q, et al. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: the Sichuan Homocysteine study. BMC Pregnancy Childbirth. 2020;20(1):176. https://doi.org/10.1186/s12884-020-02860-9.

    Article  CAS  Google Scholar 

  52. Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC. Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol. 2006;40(11):3463–73. https://doi.org/10.1021/es052580b.

    Article  CAS  Google Scholar 

  53. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99(2):366–94. https://doi.org/10.1093/toxsci/kfm128.

    Article  CAS  Google Scholar 

  54. Bach CC, Bech BH, Brix N, Nohr EA, Bonde JP, Henriksen TB. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review. Crit Rev Toxicol. 2015;45(1):53–67. https://doi.org/10.3109/10408444.2014.952400.

    Article  CAS  Google Scholar 

  55. Lam J, Koustas E, Sutton P, et al. The Navigation Guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1040–51. https://doi.org/10.1289/ehp.1307923.

    Article  Google Scholar 

  56. Johnson PI, Sutton P, Atchley DS, et al. The Navigation Guide - evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122(10):1028–39. https://doi.org/10.1289/ehp.1307893.

    Article  Google Scholar 

  57. Souza MCO, Saraiva MCP, Honda M, et al. Exposure to per- and polyfluorinated alkyl substances in pregnant Brazilian women and its association with fetal growth. Environ Res. 2020;187: 109585. https://doi.org/10.1016/j.envres.2020.109585.

    Article  CAS  Google Scholar 

  58. Chang CJ, Barr DB, Ryan PB, et al. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: a meet-in-the-middle approach. Environ Int. 2022;158: 106964. https://doi.org/10.1016/j.envint.2021.106964.

    Article  CAS  Google Scholar 

  59. Taibl KR, Dunlop AL, Barr DB, et al. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun. 2023;14(1):3120. https://doi.org/10.1038/s41467-023-38710-3.

    Article  CAS  Google Scholar 

  60. Gao H. Amino acids in reproductive nutrition and health. Adv Exp Med Biol. 2020;1265:111–31. https://doi.org/10.1007/978-3-030-45328-2_7.

    Article  CAS  Google Scholar 

  61. Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of amino acids during pregnancy: nutritional support. J Matern Fetal Neonatal Med. 2020;33(2):334–40. https://doi.org/10.1080/14767058.2018.1489795.

    Article  CAS  Google Scholar 

  62. Matthews DE. Review of lysine metabolism with a focus on humans. J Nutr. 2020;150(Suppl 1):2548s–55s. https://doi.org/10.1093/jn/nxaa224.

    Article  Google Scholar 

  63. Xu K, Liu G, Fu C. The tryptophan pathway targeting antioxidant capacity in the placenta. Oxid Med Cell Longev. 2018;2018:1054797. https://doi.org/10.1155/2018/1054797.

    Article  CAS  Google Scholar 

  64. Hood RB, Liang D, Tang Z, et al. Length of PM(25) exposure and alterations in the serum metabolome among women undergoing infertility treatment. Environ Epidemiol. 2022;6(1):191. https://doi.org/10.1097/ee9.0000000000000191.

    Article  Google Scholar 

  65. Zhong J, Karlsson O, Wang G, et al. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci USA. 2017;114(13):3503–8. https://doi.org/10.1073/pnas.1618545114.

    Article  CAS  Google Scholar 

  66. Rohart F, Gautier B, Singh A, Ka LC. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752. https://doi.org/10.1371/journal.pcbi.1005752.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all members from the Environmental Metabolomics and Exposomics Research Group at Emory (EMERGE) for their valuable input and feedback on this project.

Funding

Support for this project was provided by the National Institute of Health (NIH) research grant (R21ES032117). We also acknowledge the tremendous support from the HERCULES Exposome Research Center, supported by the National Institute of Environmental Health Sciences of the National Institutes of Health (P30ES019776). Additionally, RBH, SH, and KS were funded by a NIEHS T32 training grant (T32ES012870).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert B. Hood or Donghai Liang.

Ethics declarations

Conflict of Interest

None to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hood, R.B., Moyd, S., Hoffman, S. et al. Metabolomics Application in Understanding the Link Between Air Pollution and Infant Health Outcomes: A Narrative Review. Curr Pollution Rep (2024). https://doi.org/10.1007/s40726-024-00313-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-024-00313-x

Keywords

Navigation