Skip to main content
Log in

Current Updates and Perspectives of Biosorption Technology: an Alternative for the Removal of Heavy Metals from Wastewater

  • Biology and Pollution (G O'Mullan and R Boopathy, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Several municipal, industrial, and agricultural activities use and release heavy metals containing wastewater into the environment. These mixtures of heavy metals pose various hazardous and toxic effects on the environment and human health. Biosorption is a reliable and proven technology for the removal of heavy metals from wastewater. In the last decades, however, biosorption has been extensively studied for the remediation of contaminated surface water, groundwater and wastewater. The general concepts and mechanism of heavy metal uptake from different water environments are illustrated in this review. Besides, a more detailed discussion has been presented for the different types of biosorbents, namely microbial cells (fungi, bacteria, and algae) and organic/agricultural waste-based sorbents, which show great potential for heavy metals sequestration when compared to commercially available sorbent materials. The process parameters affecting the biosorption performance and kinetics have also been reviewed. Additionally, perspectives of biosorption as a heavy metal recovery technology are presented, including possibilities for online monitoring, modeling, and process control of biosorption columns at the lab and pilot scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbas S, Ismail I, Mostafa T, Sulaymon A, Abbas S. Biosorption of heavy metals: a review. J Chem Sci Technol. 2014;3:74–102.

    Google Scholar 

  2. EEA. Industrial waste water treatment - pressures on Europe’s environment. EEA report. European Environment Agency; 2019.

  3. Indhumathi P, Sathiyaraj S, Koelmel JP, Shoba SU, Jayabalakrishnan C, Saravanabhavan M. The efficient removal of heavy metal ions from industry effluents using waste biomass as low-cost adsorbent: thermodynamic and kinetic models. Z Phys Chem. 2017. https://doi.org/10.1515/zpch-2016-0900.

  4. Elberling B, Langdahl BR. Natural heavy-metal release by sulphide oxidation in the high Arctic. Can Geotech J. 1998. https://doi.org/10.1139/t98-047.

    CAS  Google Scholar 

  5. Wang S, Mulligan CN. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health. 2006. https://doi.org/10.1007/s10653-005-9032-y.

    CAS  Google Scholar 

  6. Krabbenhoft DP, Sunderland EM. Global change and mercury. Science. 2013;(341). https://doi.org/10.1126/science.1242838.

    CAS  Google Scholar 

  7. Mudhoo A, Garg VK, Wang S. Removal of heavy metals by biosorption. Environ Chem Lett. 2012. https://doi.org/10.1007/s10311-011-0342-2.

    Google Scholar 

  8. Masindi V, Muedi KL. Environmental contamination by heavy metals. In: Saleh H, Aglan R, editors. Heavy metals. London: InTech Publishers; 2018.

    Google Scholar 

  9. Huang G, Sun J, Zhang Y, Chen Z, Liu F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area. South China Sci Total Environ. 2013. https://doi.org/10.1016/j.scitotenv.2013.05.078.

    CAS  Google Scholar 

  10. Yolcubal I, Gündüz ÖC, Sönmez F. Assessment of impact of environmental pollution on groundwater and surface water qualities in a heavily industrialized district of Kocaeli (Dilovası), Turkey. Environ Earth Sci. 2016;75:1–23. https://doi.org/10.1007/s12665-015-4986-2.

    Article  CAS  Google Scholar 

  11. USEPA. National Primary Drinking Water Regulations. Washington DC: United States Environmental Protection Agency; 2009.

  12. Sarode S, Upadhyay P, Khosa MA, Mak T, Shakir A, Song S, et al. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int J Biol Macromol. 2019. https://doi.org/10.1016/j.ijbiomac.2018.10.089.

    CAS  Google Scholar 

  13. Cerbino MR, Vieira JCS, Braga CP, Oliveira G, Padilha IF, Silva TM, et al. Metalloproteomics approach to analyze mercury in breast milk and hair samples of lactating women in communities of the Amazon basin. Brazil Biol Trace Elem Res. 2018;181:216–26. https://doi.org/10.1007/s12011-017-1057-4.

    Article  CAS  Google Scholar 

  14. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009. https://doi.org/10.1016/j.jhazmat.2008.06.042.

    CAS  Google Scholar 

  15. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018. https://doi.org/10.1002/jcb.26234.

    Google Scholar 

  16. Zheng N, Wang S, Dong W, Hua X, Yunyang L, Song X, et al. The toxicological effects of mercury exposure in marine fish. Bull Environ Contam Toxicol. 2019;102:714–20. https://doi.org/10.1007/s00128-019-02593-2.

    Article  CAS  Google Scholar 

  17. EC. COUNCIL DIRECTIVE 98/83/EC with latest amendments. On the quality of water intended for human consumption. European Commission; 1998.

  18. Janyasuthiwong S, Rene ER, Esposito G, Lens PNL. Effect of pH on cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor. Hydrometaullurgy. 2015a;158:94–100.

    CAS  Google Scholar 

  19. WHO. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; 2017.

  20. Potyz A, Lens PNL, van de Vossenberg J, Rene ER, Grybos M, Guibaud G, et al. Comparison of Cu, Zn and Fe bioleaching from Cu-metallurgical slags in the presence of Pseudomonas fluorescens and Acidithiobacillus thiooxidans. Appl Geochem. 2016;68:39–52.

    Google Scholar 

  21. Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PNL. Bioleaching of metals from WEEE shredding dust. J Environ Manag. 2018;210:180–90.

    CAS  Google Scholar 

  22. Hakizimana JN, Gourich B, Chafi M, Stiriba Y, Vial C, Drogui P, et al. Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches. Desalination. 2017. https://doi.org/10.1016/j.desal.2016.10.011.

    CAS  Google Scholar 

  23. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PNL. Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural waste. Environ Technol. 2015b;36:3071–83.

    CAS  Google Scholar 

  24. Babu DS, Singh TSA, Nidheesh PV, Kumar MS. Industrial wastewater treatment by electrocoagulation process. Sep Sci Technol. 2019;00:1–33. https://doi.org/10.1080/01496395.2019.1671866.

    Article  CAS  Google Scholar 

  25. Millán M, Rodrigo MA, Fernández-Marchante CM, Díaz-AbadS PMC, Cañizares P, Lobato J. Towards the sustainable powering of the electrocoagulation of wastewater through the use of solar-vanadium redox flow battery: a first approach. Electrochim. Acta. 2018. https://doi.org/10.1016/j.electacta.2018.03.055.

    Google Scholar 

  26. Mondal S, Purkait MK, De S. Electrocoagulation. Advances in dye removal technologies. Adv. Dye Remov. Technol. 2018. https://doi.org/10.1007/978-981-10-6293-3.

    Google Scholar 

  27. Moussa DT, El-Naas MH, Nasser M, Al-Marri MJ. A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J Environ Manag. 2017. https://doi.org/10.1016/j.jenvman.2016.10.032.

    Google Scholar 

  28. Acero JL, Benitez FJ, Real FJ, Teva F. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem Eng J. 2016. https://doi.org/10.1016/j.cej.2015.12.082.

    CAS  Google Scholar 

  29. Abdolali A, Ngo HH, Guo W, Zhou JL, Zhang J, Liang S, et al. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour Technol. 2017. https://doi.org/10.1016/j.biortech.2017.01.016.

    CAS  Google Scholar 

  30. Asghar HMA, Hussain SN, Brown NW, EPL R. Comparative adsorption-regeneration performance for newly developed carbonaceous adsorbent. J. Ind. Eng. Chem. 2019. https://doi.org/10.1016/j.jiec.2018.09.012.

    CAS  Google Scholar 

  31. Joseph L, Jun B-M, Flora JRV, Park CM, Yoon Y. Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere. 2019. https://doi.org/10.1016/j.chemosphere.2019.04.198.

    CAS  Google Scholar 

  32. Kapashi E, Kapnisti M, Dafnomili A, Noli F. AloeVera as an effective biosorbent for the removal of thorium and barium from aqueous solutions. J Radioanal Nucl Chem. 2019;321:217–26. https://doi.org/10.1007/s10967-019-06558-x.

    CAS  Google Scholar 

  33. Orakwue EO, Asokbunyarat V, Rene ER, Lens PNL, Annachhatre A. Adsorption of Iron (II) from acid mine drainage contaminated groundwater using coal fly ash, coal bottom ash, and bentonite clay. Water Air Soil Poll. 2016;227(3):74.

    Google Scholar 

  34. Escudero LB, Quintas PY, Wuilloud RG, Dotto GL. Recent advances on elemental biosorption. Environ Chem Lett. 2019. https://doi.org/10.1007/s10311-018-0816-6.

    Google Scholar 

  35. Mo L, Pang H, Tan Y, Zhang S, Li J. 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu(II) ions from water. Chem Eng J. 2019. https://doi.org/10.1016/j.cej.2019.122157.

    CAS  Google Scholar 

  36. Kelly-Vargas K, Cerro-Lopez M, Reyna-Tellez S, Bandala ER, Sanchez-Salas JL. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys Chem Earth. 2012. https://doi.org/10.1016/j.pce.2011.03.006.

    Google Scholar 

  37. Gadd GM. Heavy metal pollutants: environmental and biotechnological aspects. In: Schmidt TM, editor-in-chief. Encyclopedia of Microbiology. Oxford: Elsevier. 2009:504–17.

    Google Scholar 

  38. Tsezos M, Emmanouela R, Hatzikioseyian A. Biosorption - principles and applications for metal immobilization from waste-water streams. EU-Asia Work Clean Prod Nanotechnologies 2006.

  39. Ahemad M, Kibret M. Recent trends in microbial biosorption of heavy metals: a review. Biochem. Mol. Biol. 2013. https://doi.org/10.12966/bmb.06.02.2013.

    Google Scholar 

  40. Siddiquee S, Rovina K, Al Azad S, Naher L, Suryani S, Chaikaew P. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microbial Biochem Technol. 2015. https://doi.org/10.4172/1948-5948.1000243.

  41. El-Naggar NE-A, Hamouda RA, Mousa IE, Abdel-Hamid MS, Rabei NH. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-31660-7.

  42. Villen-Guzman M, Gutierrez-Pinilla D, Gomez-Lahoz C, Vereda-Alonso C, Rodriguez-Maroto JM, Arhoun B. Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environ Res. 2019. https://doi.org/10.1016/j.envres.2019.108849.

    CAS  Google Scholar 

  43. Mohapatra RK, Parhi PK, Pandey S, Bindhani BK, Thatoi H, Panda CR. Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies. J Environ Manag. 2019. https://doi.org/10.1016/j.jenvman.2019.06.073.

    CAS  Google Scholar 

  44. Choińska-Pulit A, Sobolczyk-Bednarek J, Łaba W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ Saf. 2018;149:275–83.

    Google Scholar 

  45. Bueno BYM, Torem ML, Molina F, de Mesquita LMS. Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner. Eng. 2008. https://doi.org/10.1016/j.mineng.2007.08.013.

    CAS  Google Scholar 

  46. Saranya K, Sundaramanickam A, Shekhar S, Meena M, Sathishkumar RS, Balasubramanian T. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2. J Environ Manag. 2018. https://doi.org/10.1016/j.jenvman.2018.05.083.

    CAS  Google Scholar 

  47. Escudero-Oñate C, Villaescusa I. The thermodynamics of heavy metal sorption onto lignocellulosic biomass. In: Saleh H, Aglan R, editors. Heavy metals. London: InTech Publishers; 2018.

    Google Scholar 

  48. Gonçalves Jr AC, Schwantes D, Campagnolo MA, Dragunski DC, Tarley CRT, Silva AKS dos. Removal of toxic metals using endocarp of Açaí berry as biosorbent. Water Sci Technol. 2018; https://doi.org/10.2166/wst.2018.032.

    Google Scholar 

  49. Ahmad A, Bhat AH, Buang A. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads. Environ Technol. 2019. https://doi.org/10.1080/09593330.2018.1430171.

    Google Scholar 

  50. Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. J Hazard Mater. 2008;158:316–23.

    CAS  Google Scholar 

  51. Moreira VR, Lebron YAR, Lange LC, Santos LVS. Simultaneous biosorption of Cd(II), Ni(II) and Pb(II) onto a brown macroalgae Fucus vesiculosus: mono- and multi-component isotherms, kinetics and thermodynamics. J Environ Manag. 2019. https://doi.org/10.1016/j.jenvman.2019.109587.

    Google Scholar 

  52. Hansda A, Kumar V, A. Biosorption of copper by bacterial adsorbents: a review. Res J Environ Toxicol 2015;9:45–58.

  53. El-Gendy MMAA, El-Bondkly AMA. Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Braz. J Microbiol. 2016;47(3):571–86.

    CAS  Google Scholar 

  54. Wang P, Du M, Zhu H, Bao S, Yang T, Zoi M. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J Hazard Mater. 2015;286:533–44.

    CAS  Google Scholar 

  55. Yao N, Li C, Yu J, Xu Q, Wei S, Tian Z, et al. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Technol: Sep. Pur; 2020. https://doi.org/10.1016/j.seppur.2019.116278.

    Book  Google Scholar 

  56. Mazur LP, Cechinel MAP, de Souza SMAGU, Boaventura RAR, Vilar VJP. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: a review. J Environ Manage. 2018. https://doi.org/10.1016/j.jenvman.2018.05.086.

    CAS  Google Scholar 

  57. Benaisa S, Arhoun B, Villen-Guzman M, El Mail R, Rodriguez-Maroto JM. Immobilization of brown seaweeds Sargassum vulgare for Fe3+ removal in batch and fixed-bed column. Water, Air, Soil Pollut. 2019; https://doi.org/10.1007/s11270-018-4069-6.

  58. Mohammed T, Ibrahim R, Naji A. Experimental investigation and thermodynamic study of heavy metal removal from industrial wastewater using pomegranate peel. Al-Attar TS, Al-Neami MA, AbdulSahib WS. (Eds.), MATEC Web Conf. 2018; https://doi.org/10.1051/matecconf/201816205007

    Google Scholar 

  59. Barquilha CER, Cossich ES, Tavares CRG, da Silva EA. Biosorption of nickel and copper ions from synthetic solution and electroplating effluent using fixed bed column of immobilized brown algae. J Water Proc Eng. 2019;32:100904.

    Google Scholar 

  60. da Silva EA, Cossich ES, CRG T, Filho LCR, Guirardello R. Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column. Process Biochem. 2002;38:791–9.

    Google Scholar 

  61. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC. Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014. https://doi.org/10.1016/j.jece.2013.12.019.

    CAS  Google Scholar 

  62. Hui TS, Zaini MAA. Potassium hydroxide activation of activated carbon: a commentary. Carbon Lett. 2015. https://doi.org/10.5714/CL.2015.16.4.275.

    Google Scholar 

  63. Johari K, Alias AS, Saman N, Song ST, Mat H. Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk. Waste Manage Res. 2015. https://doi.org/10.1177/0734242X14562660.

    Google Scholar 

  64. Heraldy E, Lestari WW, Permatasari D, Arimurti DD. Biosorbent from tomato waste and apple juice residue for lead removal. J. Environ. Chem. Eng. 2018. https://doi.org/10.1016/j.jece.2017.12.026.

    CAS  Google Scholar 

  65. Ibrahim WM, Hassan AF, Azab YA. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egypt J Basic Appl Sci. 2016. https://doi.org/10.1016/j.ejbas.2016.07.005.

    Google Scholar 

  66. Jain SN, Gogate PR. Acid blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus dulcis. J Environ Chem Eng. 2017b. https://doi.org/10.1016/j.jece.2017.06.047.

    CAS  Google Scholar 

  67. Jain SN, Gogate PR. Adsorptive removal of acid violet 17 dye from wastewater using biosorbent obtained from NaOH and H2SO4 activation of fallen leaves of Ficus racemosa. J Mol Liq. 2017a. https://doi.org/10.1016/j.molliq.2017.08.009.

    CAS  Google Scholar 

  68. Gupta H, Gogate PR. Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound. Ultrason Sonochem. 2016. https://doi.org/10.1016/j.ultsonch.2015.11.016.

    CAS  Google Scholar 

  69. Gautam RK, Gautam PK, Banerjee S, Rawat V, Soni S, Sharma SK, et al. Removal of tartrazine by activated carbon biosorbents of Lantana camara: kinetics, equilibrium modeling and spectroscopic analysis. J. Environ. Chem Eng. 2015. https://doi.org/10.1016/j.jece.2014.11.026.

    CAS  Google Scholar 

  70. Haykiri-Acma H, Yaman S, Kucukbayrak S. Gasification of biomass chars in steam-nitrogen mixture. Energy Convers Manag. 2006. https://doi.org/10.1016/j.enconman.2005.06.003.

    CAS  Google Scholar 

  71. Yang T, Lua AC. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. J Colloid Interface Sci. 2003. https://doi.org/10.1016/S0021-9797(03)00689-1.

    CAS  Google Scholar 

  72. Zhang T, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC. Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem Eng J. 2004. https://doi.org/10.1016/j.cej.2004.06.011.

    CAS  Google Scholar 

  73. Molina-Sabio M, González MT, Rodriguez-Reinoso F, Sepúlveda-Escribano A. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon N Y. 1996. https://doi.org/10.1016/0008-6223(96)00006-1.

    CAS  Google Scholar 

  74. Sun K, Chun JJ. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy. 2010. https://doi.org/10.1016/j.biombioe.2009.12.020.

    CAS  Google Scholar 

  75. Das N, Vimala R, Karthika P. Biosorption of heavy metals - an overview. Indian J Biotechnol. 2008;7:159–69.

    CAS  Google Scholar 

  76. Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag. 2018. https://doi.org/10.1016/j.jenvman.2018.08.069.

    CAS  Google Scholar 

  77. Kumar, GVSR, Srinivasa Rao, K, Yadav, A, Lakshman Kumar, M, Partha Sarathi, TVN. Biosorption of copper(II) and manganese(II) from waste water using low cost bio adsorbents. J. Indian Chem. Soc. 2018;95;1-8.

  78. Wang N, Qiu Y, Xiao T, Wang J, Chen Y, Xu X, et al. Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: high performance, selectivity and application. J Hazard Mater. 2019. https://doi.org/10.1016/j.jhazmat.2019.03.056.

    CAS  Google Scholar 

  79. Vishan I, Saha B, Sivaprakasam S, Kalamdhad A. Evaluation of Cd(II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: biosorption kinetics, thermodynamics and mechanism. Environ Technol Innov. 2019. https://doi.org/10.1016/j.eti.2019.100323.

    Google Scholar 

  80. Azouaou N, Djaafri A, Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater. 2010;184(1):126–34.

    CAS  Google Scholar 

  81. Ojima Y, Kosako S, Kihara M, Miyoshi N, Igarashi K, Azuma M. Recovering metals from aqueous solutions by biosorption onto phosphorylated dry baker’s yeast. Sci Rep. 2019;9:1–9. https://doi.org/10.1038/s41598-018-36306-2.

    Article  CAS  Google Scholar 

  82. Giannakoudakis DA, Hosseini-Bandegharaei A, Tsafrakidou P, Triantafyllidis KS, Kornaros M, Anastopoulos I. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: a review. J Environ Manag. 2018. https://doi.org/10.1016/j.jenvman.2018.08.064.

    CAS  Google Scholar 

  83. Ranasinghe SH, Navaratne AN, Priyantha N. Enhancement of adsorption characteristics of Cr(III) and Ni(II) by surface modification of jackfruit peel biosorbent. J. Environ. Chem. Eng. 2018. https://doi.org/10.1016/j.jece.2018.08.058.

    CAS  Google Scholar 

  84. Donner MW, Arshad M, Ullah A, Siddique T. Unravelled keratin-derived biopolymers as novel biosorbents for the simultaneous removal of multiple trace metals from industrial wastewater. Sci Total Environ. 2019. https://doi.org/10.1016/j.scitotenv.2018.08.085.

    CAS  Google Scholar 

  85. Gregg K, Rogers GE. Feather keratin: composition, structure and biogenesis. In: Bereiter-Hahn J, Matoltsy AG, Richards KS, editors. Biology of the integument. Heidelberg, Germany: Springer, Berlin; 1986.

    Google Scholar 

  86. Ramteke LP, Gogate PR. Treatment of water containing heavy metals using a novel approach of immobilized modified sludge biomass based adsorbents. Sep Purif Technol. 2016. https://doi.org/10.1016/j.seppur.2016.02.047.

    CAS  Google Scholar 

  87. Alihosseini F. Plant-based compounds for antimicrobial textiles. Antimicrobial Textiles. 2016. https://doi.org/10.1016/B978-0-08-100576-7.00010-9.

    Google Scholar 

  88. Fertah M, Belfkira A, Dahmane E, Taourirte M, Brouillette F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem. 2017. https://doi.org/10.1016/j.arabjc.2014.05.003.

    CAS  Google Scholar 

  89. Wang Y, Feng Y, Zhang XF, Zhang X, Jiang J, Yao J. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals. J Colloid Interface Sci. 2018. https://doi.org/10.1016/j.jcis.2017.12.035.

    CAS  Google Scholar 

  90. Anantha RK, Kota S. Removal of lead by adsorption with the renewable biopolymer composite of feather (Dromaius novaehollandiae) and chitosan (Agaricus bisporus). Environ Technol Innov. 2016. https://doi.org/10.1016/j.eti.2016.04.004.

    Google Scholar 

  91. Rahimi S, Moattari RM, Rajabi L, Derakhshan AA. Optimization of lead removal from aqueous solution using goethite/chitosan nanocomposite by response surface methodology. Colloids Surfaces A: Physicochem Eng Asp. 2015. https://doi.org/10.1016/j.colsurfa.2015.07.063.

    CAS  Google Scholar 

  92. Tsai WC, Ibarra-Buscano S, Kan CC, Futalan CM, Dalida MLP, Wan MW. Removal of copper, nickel, lead, and zinc using chitosan-coated montmorillonite beads in single- and multi-metal system. Desalin Water Treat. 2016. https://doi.org/10.1080/19443994.2015.1035676.

    Google Scholar 

  93. Azharul Islam M, Tan YL, Atikul Islam M, Romić M, Hameed BH. Chitosan-bleaching earth clay composite as an efficient adsorbent for carbon dioxide adsorption: process optimization. Colloids Surfaces A: Physicochem. Eng. 2018; Asp.. https://doi.org/10.1016/j.colsurfa.2018.06.021.

    CAS  Google Scholar 

  94. Adamczuk A, Kołodyńska D. Equilibrium, thermodynamic and kinetic studies on removal of chromium, copper, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem Eng J. 2015. https://doi.org/10.1016/j.cej.2015.03.088.

    CAS  Google Scholar 

  95. Rajamani M, Rajendrakumar K. Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal. J Environ Manag. 2019. https://doi.org/10.1016/j.jenvman.2019.05.056.

    CAS  Google Scholar 

  96. Kenawy IM, Hafez MAH, Ismail MA, Hashem MA. Adsorption of Cu(II), Cd(II), hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by Guanyl-modified cellulose. Int J Biol Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2017.10.017.

    CAS  Google Scholar 

  97. Hu ZH, Omer AM, Ouyang XK, Yu D. Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int J Biol Macromol. 2018. https://doi.org/10.1016/j.ijbiomac.2017.11.171.

    CAS  Google Scholar 

  98. Chen Q, Zheng J, Wen L, Yang C, Zhang L. A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: performance and quantum chemical mechanism. Chemosphere. 2019. https://doi.org/10.1016/j.chemosphere.2019.02.138.

    CAS  Google Scholar 

  99. Ge, Y, Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018;6;7181-7192. <https://doi.org/10.1021/acssuschemeng.8b01345>.

  100. Wang, F, Pan, Y, Cai, P, Guo, T, Xiao, H. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour. Technol. 2017;241;482-490. <https://doi.org/10.1016/j.biortech.2017.05.162>.

  101. Zhou, J., Liu, Y., Zhou, X., Ren, J., Zhong, C. Magnetic multi-porous bio-adsorbent modified with amino siloxane for fast removal of Pb(II) from aqueous solution. Appl. Surf. Sci. 2018;427;976-985. <https://doi.org/10.1016/j.apsusc.2017.08.110>.

  102. Segovia-Sandoval, S, Ocampo-Pérez, R, Berber-Mendoza, MS, Leyva-Ramos, R, Jacobo-Azuara, A, Medellín-Castillo, NA. Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II). J. Water Process Eng. 2018;25;45-53. <https://doi.org/10.1016/j.jwpe.2018.06.007>.

  103. Hafshejani, LD, Nasab, SB, Gholami, RM, Moradzadeh, M, Izadpanah, Z, Hafshejani, SB, Bhatnagar, A. Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent. J. Mol. Liq. 2015;211;448-456. <https://doi.org/10.1016/j.molliq.2015.07.044>.

    CAS  Google Scholar 

  104. Gao J, Yin J, Tao Z, Liu Y, Lin X, Deng J, et al. An ultrasensitive fluorescence sensor with simple operation for Cu2+ specific detection in drinking water. ACS Omega. 2018a. https://doi.org/10.1021/acsomega.7b01497.

    CAS  Google Scholar 

  105. Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li C, Zhou Y. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ. 2018. https://doi.org/10.1016/j.scitotenv.2017.09.126.

    CAS  Google Scholar 

  106. Ullah N, Mansha M, Khan I, Qurashi A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC - Trends Anal. Chem. 2018; https://doi.org/10.1016/j.trac.2018.01.002.

    CAS  Google Scholar 

  107. Dasary SSR, Jones YK, Barnes SL, Ray PC, Singh AK. Alizarin dye based ultrasensitive plasmonic SERS probe for trace level cadmium detection in drinking water. Sensors Actuators, B Chem. 2016. https://doi.org/10.1016/j.snb.2015.10.003.

    CAS  Google Scholar 

  108. Guo H, Hamlet LC, He L, Xing B. A field-deployable surface-enhanced Raman scattering (SERS) method for sensitive analysis of silver nanoparticles in environmental waters. Sci Total Environ. 2019;653:1034–41. https://doi.org/10.1016/j.scitotenv.2018.10.435.

    Article  CAS  Google Scholar 

  109. Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J. Environ. Sci. (China) 80, 14–34. 2019; https://doi.org/10.1016/j.jes.2018.07.004

    Google Scholar 

  110. Al-Rekabi SH, Mustapha Kamil Y, Abu Bakar MH, Yap WF, Lim HN, Kanagesan S, et al. Hydrous ferric oxide-magnetite-reduced graphene oxide nanocomposite for optical detection of arsenic using surface plasmon resonance. Opt Laser Technol. 2019. https://doi.org/10.1016/j.optlastec.2018.10.018.

    CAS  Google Scholar 

  111. Sadrolhosseini AR, Naseri M, Rashid SA. Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer for detecting heavy metal ions using surface plasmon resonance technique. Opt Laser Technol. 2017. https://doi.org/10.1016/j.optlastec.2017.03.008.

    CAS  Google Scholar 

  112. Verma R, Gupta BD. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 2015. https://doi.org/10.1016/j.foodchem.2014.06.045.

    CAS  Google Scholar 

  113. Liu X, Li Z, Ding R, Ren B, Li Y. A nanocarbon paste electrode modified with nitrogen-doped graphene for square wave anodic stripping voltammetric determination of trace lead and cadmium. Microchim Acta. 2016;183:709–14. https://doi.org/10.1007/s00604-015-1713-3.

    Article  CAS  Google Scholar 

  114. Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014. https://doi.org/10.1039/c4cs00141a.

    CAS  Google Scholar 

  115. Xing H, Xu J, Zhu X, Duan X, Lu L, Wang W, et al. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J Electroanal Chem. 2016. https://doi.org/10.1016/j.jelechem.2015.11.043.

    CAS  Google Scholar 

  116. Waheed A, Mansha M, Ullah N. Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC - Trends Anal. Chem. 2018; https://doi.org/10.1016/j.trac.2018.04.012.

    CAS  Google Scholar 

  117. Cui L, Wu J, Ju H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron. 2015. https://doi.org/10.1016/j.bios.2014.07.052.

    CAS  Google Scholar 

  118. Welch CM, Compton RG. The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem. 2006. https://doi.org/10.1007/s00216-005-0230-3.

    CAS  Google Scholar 

  119. Lv Z-L, Qi G-M, Jiang T-J, Guo Z, Yu D-Y, Liu J-H, et al. A simplified electrochemical instrument equipped with automated flow-injection system and network communication technology for remote online monitoring of heavy metal ions. J Electroanal Chem. 2017;791:49–55.

    CAS  Google Scholar 

  120. Gao M, Zhang Z, Lv M, Song W, Lv Y. Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol Environ Saf. 2018b. https://doi.org/10.1016/j.ecoenv.2017.10.038.

    CAS  Google Scholar 

  121. Li HF, Shelton SD, Townsend TA, Mei N, Manjanatha MG. Evaluation of cii gene mutation in the brains of big blue mice exposed to acrylamide and glycidamide in drinking water. J. Toxicol. Sci. 2016. https://doi.org/10.2131/jts.41.719.

  122. Li JJ, Tai HW, Yu Y, Wen Y, Wang XH, Zhao YH. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level. Environ Toxicol Pharmacol. 2015. https://doi.org/10.1016/j.etap.2015.06.003.

    CAS  Google Scholar 

  123. Yu D, Zhai J, Yong D, Dong S. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water. Analyst. 2013. https://doi.org/10.1039/c3an36907b.

    CAS  Google Scholar 

  124. Adekunle A, Raghavan V, Tartakovsky B. On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor. Biosens Bioelectron. 2019;132:382–90.

    CAS  Google Scholar 

  125. Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. Environ Int. 2016. https://doi.org/10.1016/j.envint.2016.03.003.

    CAS  Google Scholar 

  126. Hassan SHA, Van Ginkel SW, Oh SE. Detection of Cr6+ by the sulfur oxidizing bacteria biosensor: effect of different physical factors. Environ Sci Technol. 2012. https://doi.org/10.1021/es301360a.

    CAS  Google Scholar 

  127. Hassan SHA, Van Ginkel SW, Oh SE. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor. Chemosphere. 2013. https://doi.org/10.1016/j.chemosphere.2012.06.040.

    CAS  Google Scholar 

  128. Oh SE, Hassan SHA, Van Ginkel SW. A novel biosensor for detecting toxicity in water using sulfur-oxidizing bacteria, in: sensors and actuators, B: Chemical 2011; https://doi.org/10.1016/j.snb.2010.01.052.

    CAS  Google Scholar 

  129. Khishamuddin NA, Shing WL, Kin CM, Niu VBW. Fluorometric response of photosynthetic microorganism consortium as potential bioindicator for heavy metals detection in water. Environment Asia. 2018. https://doi.org/10.14456/ea.2018.6.

  130. Xie JZ, Chang H-L, Kilbane JJ. Removal and recovery of metal ions from wastewater using biosorbents and chemically modified biosorbents. Bioresour Technol. 1996. https://doi.org/10.1016/0960-8524(96)00059-4.

    CAS  Google Scholar 

  131. Tang J, Xi J, Yu J, Chi R, Chen J. Novel combined method of biosorption and chemical precipitation for recovery of Pb2+ from wastewater. Environ Sci Pollut Res. 2018;25:28705–12. https://doi.org/10.1007/s11356-018-2901-6.

    Article  CAS  Google Scholar 

  132. Ali I, Peng C, Khan ZM, Naz I, Sultan M. An overview of heavy metal removal from wastewater using magnetotactic bacteria. J Chem Technol Biotechnol. 2018. https://doi.org/10.1002/jctb.5648.

    CAS  Google Scholar 

  133. Srivastava N, Thakur AK, Shahi VK. Phosphorylated cellulose triacetate-silica composite adsorbent for recovery of heavy metal ion. Carbohydrate Poly. 2016;136:1315–22.

    CAS  Google Scholar 

  134. Elahi A, Ajaz M, Rehman A, Vuilleumier S, Khan Z, Hussain SZ. Isolation, characterization, and multiple heavy metal-resistant and hexavalent chromium-reducing Microbacterium testaceum B-HS2 from tannery effluent. J King Saud Univ - Sci. 2019. https://doi.org/10.1016/j.jksus.2019.02.007.

    Google Scholar 

  135. Fernández-González R, Martín-Lara MA, Moreno JA, Blázquez G, Calero M. Effective removal of zinc from industrial plating wastewater using hydrolyzed olive cake: scale-up and preparation of zinc-based biochar. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.04.195.

    Google Scholar 

  136. Ronda A, Martín-Lara MA, Osegueda O, Castillo V, Blázquez G. Scale-up of a packed bed column for wastewater treatment. Water Sci Technol. 2018;77:1386–96. https://doi.org/10.2166/wst.2018.020.

    Article  CAS  Google Scholar 

  137. Quintelas C, Pereira R, Kaplan E, Tavares T. Removal of Ni(II) from aqueous solutions by an Arthrobacter viscosus biofilm supported on zeolite: from laboratory to pilot scale. Bioresour Technol. 2013. https://doi.org/10.1016/j.biortech.2013.05.059.

    CAS  Google Scholar 

  138. Montgomery, Design and Analysis of Experiments, (3rd ed.), 1991, Wiley, New York, USA.

  139. Du Q, Liu S, Cao Z, Wang Y. Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep Purif Technol. 2005;44(3):229–34.

    CAS  Google Scholar 

  140. Behera SK, Rene ER, Park H-S. Neural network modeling of sorption of pharmaceuticals in engineered floodplain filtration system. Expert Sys Appl. 2012;39:6052–60.

    Google Scholar 

  141. Rene ER, Maliyekkal SM, Philip L, Swaminathan T. Back-propagation neural network for performance prediction in trickling bed air biofilter. Int J Environ Poll. 2006;28:382–401.

    CAS  Google Scholar 

  142. Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, et al. Preferential adsorption of cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J. 2015;284:917–25.

    Google Scholar 

Download references

Acknowledgments

O.A. Ramírez Calderón and O.M. Abdeldayem thank the Erasmus+ International Master of Science in Environmental Technology and Engineering (IMETE) for supporting the M.Sc programme at UCT Prague (Czech Republic), IHE Delft (The Netherlands), and Ghent University (Belgium). ERR thanks IHE Delft (The Netherlands) for providing staff time support in Module 6 (Communication skills for engineers) for the year 2018–2019. A. Pugazhendhi thanks TDTU (Vietnam) for providing infrastructural support to collaborate with researchers from The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Ramírez Calderón.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez Calderón, O.A., Abdeldayem, O.M., Pugazhendhi, A. et al. Current Updates and Perspectives of Biosorption Technology: an Alternative for the Removal of Heavy Metals from Wastewater. Curr Pollution Rep 6, 8–27 (2020). https://doi.org/10.1007/s40726-020-00135-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00135-7

Keywords

Navigation