Skip to main content

Advertisement

Log in

A Review on the Factors Affecting the Deposition, Retention, and Biodegradation of Oil Stranded on Beaches and Guidelines for Designing Laboratory Experiments

  • Sediment Pollution (D Lampert, Section Editor)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

The distribution and persistence of oil within the matrix of a beach depends on the oil and beach properties, the presence of fines in the water column, and beach hydrodynamics and biochemistry. In this review, we attempted to provide an assessment of the journey of oil from offshore oil spills until it deposits within beaches. In particular, we addressed the disparity of spatial scales between microscopic processes, such as the formation of oil particle aggregates and oil biodegradation, and large-scale forcings, such as the tide. While aerobic biodegradation can remove more than 80% of the oil mass from the environment, its rate depends on the pore water concentration of oxygen and nutrients, both of them vary across the beach and with time. For this reason, we discussed in details the methods used for measuring water properties in situ and ex situ. We also noted that existing first-order decay models for oil biodegradation are expedient, but might not capture impacts of water chemistry on oil biodegradation. We found that there is a need to treat the beach–nearshore system as one unit rather than two separate entities. Scaling down large-scale hydrodynamics requires a coarser porous medium in the laboratory. Unfortunately, this implies that microscopic-scale processes cannot be reproduced in such a setup, and one needs a separate system for simulating small-scale processes. Our findings of large spatio-temporal variability in pore-water properties suggest that major advancements in addressing oil spills on beaches require holistic approaches that combine hydrodynamics with biochemistry and oil chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajijolaiya LO, Hill PS, Khelifa A, Islam RM, Lee K. Laboratory investigation of the effects of mineral size and concentration on the formation of oil–mineral aggregates. Mar Pollut Bull. 2006;52(8):920–7.

    CAS  Google Scholar 

  2. Aronson D, Boethling R, Howard P, Stiteler W. Estimating biodegradation half-lives for use in chemical screening. Chemosphere. 2006;63(11):1953–60. https://doi.org/10.1016/j.chemosphere.2005.09.044.

    Article  CAS  Google Scholar 

  3. Atlas R, Bragg J. Bioremediation of marine oil spills: when and when not-the Exxon Valdez experience. Microbial Biotechnol. 2009;2(2):213–21.

    CAS  Google Scholar 

  4. Atlas RM, Bartha R. Hydrocarbon biodegradation and oil spill bioremediation. In: Marshall KC, editor. Advances in microbial ecology. Boston: Springer; 1992. p. 287–338. https://doi.org/10.1007/978-1-4684-7609-5_6.

    Chapter  Google Scholar 

  5. Atlas RM, Bartha R. Microbial ecology: fundamentals and applications. Sydney: The Benjamin/Cummnings; 1993.

    Google Scholar 

  6. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87(2):427–44. https://doi.org/10.1007/s00253-010-2589-0.

    Article  CAS  Google Scholar 

  7. Barlow PM, Reichard EG. Saltwater intrusion in coastal regions of North America. Hydrogeol J. 2010;18(1):247–60.

    CAS  Google Scholar 

  8. Barrera DM, Ortiz DP, Yarranton HW. Molecular weight and density distributions of asphaltenes from crude oils. Energy Fuel. 2013;27(5):2474–87. https://doi.org/10.1021/ef400142v.

    Article  CAS  Google Scholar 

  9. Bear J. Dynamics of flow in porous media, 764 pp. New York: Dover; 1988.

    Google Scholar 

  10. Berthe-Corti L, Bruns A. Composition and activity of marine alkane-degrading bacterial communities in the transition from suboxic to anoxic conditions. Microb Ecol. 2001;42(1):46–55. https://doi.org/10.1007/s002480000082.

    Article  CAS  Google Scholar 

  11. Beyer W. Hydrogeological investigations in the deposition of water pollutants. Journal of Applied Geology. 1966;12(1):599–606.

    Google Scholar 

  12. Bobo A, Khoury N, Li H, Boufadel M. Groundwater flow in a tidally influenced gravel beach in Prince William Sound, Alaska, 478–494 pp. 2012. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000454.

    Google Scholar 

  13. Bodocsi A, Minkarah IA, Amicon A, Arudi RS. Development and comparison of permeability measurement techniques for jointed concrete pavement bases. Transp Res Rec. 1994;(1434):37–43.

  14. Boehm PD, Page DS, Brown JS, Neff JM, Bragg JR, Atlas RM. Distribution and weathering of crude oil residues on shorelines 18 years after the Exxon Valdez spill. Environ Sci Technol. 2008;42(24):9210–6. https://doi.org/10.1021/es8022623.

    Article  CAS  Google Scholar 

  15. Boll M, Estelmann S, Heider J. Anaerobic degradation of hydrocarbons: mechanisms of hydrocarbon activation in the absence of oxygen. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. 2018:1–27.

  16. Borden RC, Lee MD, Thomas JM, Bedient PB, Ward CH. In situ measurement and numerical simulation of oxygen limited biotransformation. Ground Water Monitoring & Remediation. 1989;9(1):83–91.

    CAS  Google Scholar 

  17. Boufadel M, Reeser P, Suidan M, Wrenn B, Cheng J, Du X, et al. Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environ Technol. 1999a;20(2):191–9.

    CAS  Google Scholar 

  18. Boufadel M, Suidan M, Venosa A, Bowers M. Steady seepage in trenches and dams: effect of capillary flow. J Hydraulic Eng. 1999b;125(3):286–94. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:3(286.

    Article  Google Scholar 

  19. Boufadel M, Suidan M, Venosa A, Rauch C, Biswas P. 2D Variably saturated flows: physical scaling and Bayesian estimation. J Hydrologic Eng. 1998;3(4):223–31. https://doi.org/10.1061/(ASCE)1084-0699(1998)3:4(223.

    Article  Google Scholar 

  20. Boufadel MC. A mechanistic study of nonlinear solute transport in a groundwater-surface water system under steady state and transient hydraulic conditions. Water Resour Res. 2000;36(9):2549–65.

    CAS  Google Scholar 

  21. Boufadel MC, Geng X, Short J. Bioremediation of the Exxon Valdez oil in Prince William Sound beaches. Marine Pollution: Bulletin; 2016.

    Google Scholar 

  22. Boufadel MC, Li H, Suidan MT, Venosa AD. Tracer studies in a laboratory beach subjected to waves. J Environ Eng. 2007;133(7):722–32. https://doi.org/10.1061/(ASCE)0733-9372(2007)133:7(722.

    Article  CAS  Google Scholar 

  23. Boufadel MC, Sharifi Y, Van Aken B, Wrenn BA, Lee K. Nutrient and oxygen concentrations within the sediments of an Alaskan beach polluted with the Exxon Valdez oil spill. Environ Sci Technol. 2010;44(19):7418–24. https://doi.org/10.1021/es102046n.

    Article  CAS  Google Scholar 

  24. Boufadel MC, Suidan MC, Venosa A. Tracer studies in laboratory beach simulating tidal influences. J Environ Eng. 2006;132(6):616–23.

    CAS  Google Scholar 

  25. Boufadel MC, Suidan MT, V. A. D. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably-saturated porous media. J Contam Hydrol. 1999c;37:1–20.

    CAS  Google Scholar 

  26. Bragg JR, Owens EH. Shoreline cleansing by interactions between oil and fine mineral particles. Paper presented at Proc. Int. Oil Spill Conference. 1995.

  27. Bragg JR, Prince RC, Harner EJ, Atlas RM. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature. 1994;368(6470):413–8.

    CAS  Google Scholar 

  28. Brakstad OG, Daling PS, Faksness L-G, Almås IK, Vang S-H, Syslak L, et al. Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar Pollut Bull. 2014;84(1):125–34. https://doi.org/10.1016/j.marpolbul.2014.05.027.

    Article  CAS  Google Scholar 

  29. Brakstad OG, Nordtug T, Throne-Holst M. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Mar Pollut Bull. 2015;93(1):144–52. https://doi.org/10.1016/j.marpolbul.2015.02.006.

    Article  CAS  Google Scholar 

  30. Brakstad OG, Ribicic D, Winkler A, Netzer R. Biodegradation of dispersed oil in seawater is not inhibited by a commercial oil spill dispersant. Mar Pollut Bull. 2018;129(2):555–61. https://doi.org/10.1016/j.marpolbul.2017.10.030.

    Article  CAS  Google Scholar 

  31. Carrera J, Neuman SP. Estimation of aquifer parameters under transient and steady state conditions: 3: Application to synthetic and field data. Water Resour Res. 1986;22(2):228–42.

    Google Scholar 

  32. Chalneau C-H, Morel J-L, Oudot J. Microbial degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. Environ Sci Technol. 1995;29(6):1615–21.

    Google Scholar 

  33. Cheng N-S, Law AW-K, Findikakis AN. Oil transport in surf zone. J Hydraul Eng. 2000;126(11):803–9.

    Google Scholar 

  34. Chevalier LR, Petersen J. Literature review of 2-D laboratory experiments in NAPL flow, transport, and remediation. J Soil Contam. 1999;8(1):149–67.

    CAS  Google Scholar 

  35. Chiang CY, Salanitro JP, Chai EY, Colthart JD, Klein CL. Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer—data analysis and computer modeling. Groundwater. 1989;27(6):823–34. https://doi.org/10.1111/j.1745-6584.1989.tb01046.x.

    Article  CAS  Google Scholar 

  36. Cleveland CC, Liptzin D. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry. 2007;85(3):235–52. https://doi.org/10.1007/s10533-007-9132-0.

    Article  Google Scholar 

  37. Cloutier D, Amos CL, Hill PR, Lee K. Oil erosion in an annular flume by seawater of varying turbidities: a critical bed shear stress approach. Spill Sci Technol Bull. 2002;8(1):83–93.

    Google Scholar 

  38. Cole GM. Assessment and remediation of petroleum contaminated sites. Boca Raton: CRC; 1994.

    Google Scholar 

  39. Constanz J. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resour Res. 1998;34(7):1609–15.

    Google Scholar 

  40. Corredor JE, Morell JM, Del Castillo CE. Persistence of spilled crude oil in a tropical intertidal environment. Mar Pollut Bull. 1990;21(8):385–8.

    CAS  Google Scholar 

  41. Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione J-F. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol. 2009;32(10):1521–8. https://doi.org/10.1007/s00300-009-0652-z.

    Article  Google Scholar 

  42. Delshad M, Pope GA. Comparison of the three-phase oil relative permeability models. Transp Porous Media. 1989;4(1):59–83.

    Google Scholar 

  43. Dentz M, de Barros F, Le Borgne T, Lester D. Evolution of solute blobs in heterogeneous porous media. J Fluid Mech. 2018;853:621–46.

    CAS  Google Scholar 

  44. Douglas GS, Hardenstine JH, Liu B, Uhler AD. Laboratory and field verification of a method to estimate the extent of petroleum biodegradation in soil. Environ Sci Technol. 2012;46(15):8279–87. https://doi.org/10.1021/es203976a.

    Article  CAS  Google Scholar 

  45. Du X, Reeser P, Suidan MT, Huang T, Moteleb M, Boufadel MC, et al. Optimum nitrogen concentration supporting maximum crude oil biodegradation in microcosms. In: Paper presented at international oil spill conference, American Petroleum Institute; 1999.

    Google Scholar 

  46. Efroymson RA, Alexander M. Biodegradation by an Arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol. 1991;57(5):1441–7.

    CAS  Google Scholar 

  47. Etkin DS, Michel J, McCay DF, Boufadel M, Li H. Integrating state-of-the-art shoreline interaction knowledge into spill modeling. In: Paper presented at international oil spill conference, American Petroleum Institute; 2008.

    Google Scholar 

  48. Fallgren PH, Jin S, Zhang R, Stahl PD. Empirical models estimating carbon dioxide accumulation in two petroleum hydrocarbon-contaminated soils. Bioremediat J. 2010;14(2):98–108. https://doi.org/10.1080/10889861003767084.

    Article  CAS  Google Scholar 

  49. Fingas M, Fieldhouse B, Lane J, Mullin J. Studies of water-in-oil emulsions: long-term stability, oil properties, and emulsions formed at sea. In: Paper presented at proceedings of the twenty-third Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Environment Canada, Vancouver, British Columbia, Canada; 2000.

    Google Scholar 

  50. Fujimaki H, Shimano T, Inoue M, Nakane K. Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone J. 2006;5(4):1246–56.

    CAS  Google Scholar 

  51. Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR. Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation. 2007;18(1):1–15. https://doi.org/10.1007/s10532-005-9029-3.

    Article  CAS  Google Scholar 

  52. Garcia-Marin A, Jiménez-Hornero FJ, Ayuso-Munoz J. Universal multifractal description of an hourly rainfall time series from a location in southern Spain. Atmosfera. 2008;21(4):347–55.

    Google Scholar 

  53. Garneau ME, Michel C, Meisterhans G, Fortin N, King TL, Greer CW, et al. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada). FEMS Microbiol Ecol. 2016;92(10). https://doi.org/10.1093/femsec/fiw130.

    Google Scholar 

  54. Gelhar LW. Stochastic subsurface hydrology. Englewood Cliffs: Prentice-Hall; 1993.

    Google Scholar 

  55. Geng, X., M. Boufadel, A. Abdollahi-Nasab (2013) Hydrodynamics in a sandy beach polluted with the Deepwater Horizon oil spill, paper presented at world environmental and water resources congress 2013: showcasing the future, ASCE.

    Google Scholar 

  56. Geng X, Boufadel M, Personna Y, Lee K, Tsao D, Demicco E. BioB: a mathematical model for the biodegradation of low solubility hydrocarbons. Mar Pollut Bull. 2014a;83(1):138–47.

    CAS  Google Scholar 

  57. Geng X, Boufadel M, Xia Y, Li H, Zhao L, Jackson N. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach. J Contam Hydrol. 2014b;165:37–52 Submitted.

    CAS  Google Scholar 

  58. Geng X, Boufadel MC. Numerical study of solute transport in shallow beach aquifers subjected to waves and tides. Journal of Geophysical Research: Oceans. 2015;120(2):1409–28.

    Google Scholar 

  59. Geng X, Boufadel MC, Cui F. Numerical modeling of subsurface release and fate of benzene and toluene in coastal aquifers subjected to tides. J Hydrol. 2017;551:793–803.

    CAS  Google Scholar 

  60. Geng X, Boufadel MC, Lee K, Abrams S, Suidan M. Biodegradation of subsurface oil in a tidally influenced sand beach: impact of hydraulics and interaction with pore water chemistry. Water Resour Res. 2015.

  61. Geng X, Pan Z, Boufadel MC, Ozgokmen T, Lee K, Zhao L. Simulation of oil bioremediation of a tidally-influenced beach: spatio-temporal evolution of nutrient and dissolved oxygen. Journal of Geophysical Research, Oceans. 2016.

  62. Gieg LM, Fowler SJ, Berdugo-Clavijo C. Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol. 2014;27:21–9. https://doi.org/10.1016/j.copbio.2013.09.002.

    Article  CAS  Google Scholar 

  63. Gundlach ER. Oil-holding capacities and removal coefficients for different shoreline types to computer simulate spills in coastal waters, paper presented at international oil spill conference: American Petroleum Institute; 1987.

    Google Scholar 

  64. Guo Q, Li H, Boufadel MC, Sharifi Y. Hydrodynamics in a gravel beach and its impact on the Exxon Valdez oil. J Geophys Res. 2010;115. https://doi.org/10.1029/2010JC006169.

  65. Gustitus SA, Clement TP. Formation, fate, and impacts of microscopic and macroscopic oil-sediment residues in nearshore marine environments: a critical review. Rev Geophys. 2017;55(4):1130–57.

    Google Scholar 

  66. Hall GJ, Frysinger GS, Aeppli C, Carmichael CA, Gros J, Lemkau KL, et al. Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors. Marine Pollut Bull. 2013;75(1):140–9.

    CAS  Google Scholar 

  67. Hayes MO, Michel J. Factors determining the long-term persistence of Exxon Valdez oil in gravel beaches. Mar Pollut Bull. 1999;38:92–101.

    CAS  Google Scholar 

  68. Hazen, A. (1892), Some physical properties of sands and gravels. Mass. State Board of Health, 24th Annu Rep, 539-556.

  69. Holebone B. Oil physical properties: measurement and correlation. 2015:39-50. In: Fingas M, editor. Handbook of oil spill science and technology: John Wiley; 2015. p. 39–50.

  70. Horel A, Schiewer S. Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Reg Sci Technol. 2009;58(3):113–9. https://doi.org/10.1016/j.coldregions.2009.04.004.

    Article  Google Scholar 

  71. Huettel M, Overholt WA, Kostka JE, Hagan C, Kaba J, Wells WB, et al. Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping. Mar Pollut Bull. 2018;126:488–500. https://doi.org/10.1016/j.marpolbul.2017.10.061.

    Article  CAS  Google Scholar 

  72. Huyakorn PS, Andersen PF, Mercer JW, White HO Jr. Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour Res. 1987;23(2):293–312.

    CAS  Google Scholar 

  73. Jahromi H, Fazaelipoor MH, Ayatollahi S, Niazi A. Asphaltenes biodegradation under shaking and static conditions. Fuel. 2014;117:230–5. https://doi.org/10.1016/j.fuel.2013.09.085.

    Article  CAS  Google Scholar 

  74. Jezequel R, Menot L, Merlin FX, Prince RC. Natural clean up of heavy fuel oil on rocks: an in situ experiment. Mar Pollut Bull. 2003;46(983–990).

    Google Scholar 

  75. John GF, Han Y, Clement TP. Weathering patterns of polycyclic aromatic hydrocarbons contained in submerged Deepwater Horizon oil spill residues when re-exposed to sunlight. Sci Total Environ. 2016;573:189–202.

    CAS  Google Scholar 

  76. Jokuty P, Fingas M, Whiticar S, Fieldhouse B. A study of viscosity and interfacial tension of oils and emulsions Rep., 43p pp, Environmental Protection Service. Ottawa, ON: Environment Canada; 1995.

    Google Scholar 

  77. Jones D, Head I, Gray N, Adams J, Rowan A, Aitken C, et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature. 2008;451(7175):176–80.

    CAS  Google Scholar 

  78. Kharrat AM, Zacharia J, Cherian VJ, Anyatonwu A. Issues with comparing SARA methodologies. Energy Fuel. 2007;21(6):3618–21.

    CAS  Google Scholar 

  79. Khelifa A, Stoffyn-Egli P, Hill PS, Lee K. Characteristics of oil droplets stabilized by mineral particles: effects of oil type and temperature. Spill Sci Technol Bull. 2002;8(1):19–30.

    Google Scholar 

  80. Kitanidis PK. The concept of the dilution index. Water Resour Res. 1994;30(7):2011–26.

    CAS  Google Scholar 

  81. Koorevaar P, Menelik G, Dirksen C. Elements of soil physics. Elsevier: Science; 1983.

    Google Scholar 

  82. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, et al. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol. 2011;77(22):7962–74. https://doi.org/10.1128/AEM.05402-11.

    Article  CAS  Google Scholar 

  83. Kozeny J. Über kapillare Leitung des Wassers im Boden-Aufstieg. In: Versickerung und Anwendung auf die Bewässerung; 1927.

    Google Scholar 

  84. LaForce MJ, Hansel CM, Fendorf S. Constructing simple wetland sampling devices. Soil Sci Soc Am J. 2000;64(2):809–11.

    CAS  Google Scholar 

  85. Le Floch S, Guyomarch J, Merlin F-X, Stoffyn-Egli P, Dixon J, Lee K. The influence of salinity on oil–mineral aggregate formation. Spill Sci Technol Bull. 2002;8(1):65–71.

    Google Scholar 

  86. Lee, T. Lunel, Wood, R. P. Swannell, and E. Stoffyn (1997), Shoreline cleanup by acceleration of clay–oil flocculation processes. In Proceedings of 1997 International Oil Spill Conference, edited, American Petroleum Institute, Washington. DC.

    Google Scholar 

  87. Lee K, Boufadel M, Chen B, Foght J, Hodson P, Swanson S, et al. The behaviour and environmental impacts of crude oil released into aqueous environments. Ottawa: The Royal Society of Canada; 2015.

    Google Scholar 

  88. Lee K, Prince R, Greer C, Doe K, Wilson J, Cobanli S, et al. Composition and toxicity of residual bunker C fuel oil in intertidal sediments after 30 years. Spill Sci Technol Bull. 2003a;8(2):187–99.

    Google Scholar 

  89. Lee K, Stoffyn-Egli P, Tremblay GH, Owens EH, Sergy GA, Guénette CC, et al. Oil–mineral aggregate formation on oiled beaches: natural attenuation and sediment relocation. Spill Sci Technol Bull. 2003b;8(3):285–96.

    CAS  Google Scholar 

  90. Lee K, Wong CS, Cretney WJ, Whitney FA, Parsons TR, Lalli CM, et al. Microbial response to crude oil and Corexit 9527: seafluxes enclosure study. Microbial Ecol. 1985;11(4):337–51.

    CAS  Google Scholar 

  91. Lee L, McDonald A, Stassen J, Lee K. Effects of oil-spill bioremediation strategies on the survival, growth and reproductive success of the mystery snail. Viviparus georgianus, ASTM SPECIAL TECHNICAL PUBLICATION. 2001;1403:323–51.

    Google Scholar 

  92. Levitus S, Conkright ME, Reid JL, Najjar RG, Mantyla A. Distribution of nitrate, phosphate and silicate in the world oceans. Prog Oceanogr. 1993;31(3):245–73. https://doi.org/10.1016/0079-6611(93)90003-V.

    Article  Google Scholar 

  93. Li H, Boufadel MC. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat Geosci. 2010;3(2):96–9.

    CAS  Google Scholar 

  94. Li H, Boufadel MC. A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil. Mar Pollut Bull. 2011;62(6):1261–9. https://doi.org/10.1016/j.marpolbul.2011.03.011.

    Article  CAS  Google Scholar 

  95. Li H, Boufadel MC, Weaver JW. Tide-induced seawater–groundwater circulation in shallow beach aquifers. J Hydrol. 2008;352(1):211–24. https://doi.org/10.1016/j.jhydrol.2008.01.013.

    Article  Google Scholar 

  96. Li, L., and D. A. Barry (2000), Wave-induced beach groundwater flow. Adv. Water Resour, 23, 325–337.

    Google Scholar 

  97. Li X, Hu BX, Burnett WC, Santos IR, Chanton JP. Submarine ground water discharge driven by tidal pumping in a heterogeneous aquifer. Groundwater. 2009;47(4):558–68.

    CAS  Google Scholar 

  98. Liu B, Banks MK, Schwab P. Effects of soil water content on biodegradation of phenanthrene in a mixture of organic contaminants. Soil Sediment Contam Int J. 2001;10(6):633–58. https://doi.org/10.1080/20015891109473.

    Article  CAS  Google Scholar 

  99. Liu J, Zheng Y, Lin H, Wang X, Li M, Liu Y, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome. 2019;7(1):47. https://doi.org/10.1186/s40168-019-0652-3.

    Article  Google Scholar 

  100. Majhi A, Sharma Y, Kukreti V, Bhatt K, Khanna R. Wax content of crude oil: a function of kinematic viscosity and pour point. Pet Sci Technol. 2015;33(4):381–7.

    CAS  Google Scholar 

  101. McFarlin KM, Perkins RA, Gardiner WW, Word JD, Northwest N. Evaluating the biodegradability and effects of dispersed oil using Arctic test species and conditions: phase 2 activities. In: Paper presented at Proceedings of the 34th Arctic and Marine Oilspill Program (AMOP) Technical Seminar on Environmental Contamination and Response; 2011.

    Google Scholar 

  102. McFarlin KM, Prince RC, Perkins R, Leigh MB. Biodegradation of dispersed oil in Arctic seawater at −1°C. PLoS One. 2014;9(1):e84297. https://doi.org/10.1371/journal.pone.0084297.

    Article  CAS  Google Scholar 

  103. Mercer JW, Cohen RM. A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. J Contam Hydrol. 1990;6(2):107–63.

    CAS  Google Scholar 

  104. Michael, H. A., A. E. Mulligan, and C. F. Harvey (2005), Seasonal oscillations in water exchange between aquifers and the coastal ocean, Nature, 436, 1145–1148, doi:11https://doi.org/10.1038/nature03935.

  105. Michaelsen M, Hulsch R, Hopner T, Berthecorti L. Hexadecane mineralization in oxygen-controlled sediment-seawater cultivations with autochthonous microorganisms. Appl Environ Microbiol. 1992;58(9):3072–7.

    CAS  Google Scholar 

  106. Michalski R. Ion chromatography as a Reference method for determination of inorganic ions in water and wastewater. Crit Rev Anal Chem. 2006;36(2):107–27. https://doi.org/10.1080/10408340600713678.

    Article  CAS  Google Scholar 

  107. Mills MA, Bonner JS, Page CA, Autenrieth RL. Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar Pollut Bull. 2004;49(5):425–35. https://doi.org/10.1016/j.marpolbul.2004.02.027.

    Article  CAS  Google Scholar 

  108. Mishra S, Parker JC. On the relation between saturated conductivity and capillary retention characteristics. Ground Water. 1990;28(5):775–7.

    Google Scholar 

  109. Moore WS. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature. 1996;380(6575):612.

    CAS  Google Scholar 

  110. Moore WS. The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci. 2010;2:59–88.

    Google Scholar 

  111. Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res. 1976;12(3).

    Google Scholar 

  112. Muangchinda C, Yamazoe A, Polrit D, Thoetkiattikul H, Mhuantong W, Champreda V, et al. Biodegradation of high concentrations of mixed polycyclic aromatic hydrocarbons by indigenous bacteria from a river sediment: a microcosm study and bacterial community analysis. Environ Sci Pollut Res. 2017;24(5):4591–602.

    CAS  Google Scholar 

  113. Nakhla G, Liu V, Bassi A. Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater. Bioresour Technol. 2006;97(1):131–9.

    CAS  Google Scholar 

  114. Nicol JP, Wise WR, Molz FJ, Benefield LD. Modeling biodegradation of residual petroleum in a saturated porous column, 30, 3313–3325, 1994. Wat Resour Res. 1994;30:3313–25.

    CAS  Google Scholar 

  115. Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In: Paper presented at Deep Sea Research and Oceanographic Abstracts: Elsevier; 1970.

    Google Scholar 

  116. OSAT. Summary report for fate and effects of remnant oil in the beach environment, prepared for Lincoln D. Stroh, CAPT, U.S. In: Coast Guard Federal on-Scene Coordinator Deepwater Horizon MC252Rep; 2011.

    Google Scholar 

  117. Owens E, Sergy GA, Guénette CC, Prince R, Lee K. The reduction of stranded oil by in situ shoreline treatment options, 257–272 pp; 2003. https://doi.org/10.1016/S1353-2561(03)00041-0.

    Book  Google Scholar 

  118. Owens EH. The interaction of fine particles with stranded oil. Pure Appl Chem. 1999;71(1):83–93.

    CAS  Google Scholar 

  119. Owens EH, Humphrey B, Sergy GA. Natural cleaning of oiled coarse sediment shorelines in Arctic and Atlantic Canada. Spill Sci Technol Bull. 1994;1(1):37–52.

    CAS  Google Scholar 

  120. Owens EH, Lee K. Interaction of oil and mineral fines on shorelines: review and assessment. Mar Pollut Bull. 2003;47(9–12):397–405. https://doi.org/10.1016/S0025-326X(03)00209-1.

    Article  CAS  Google Scholar 

  121. Owens EH, Taylor E, Humphrey B. The persistence and character of stranded oil on coarse-sediment beaches. Mar Pollut Bull. 2008;56(1):14–26. https://doi.org/10.1016/j.marpolbul.2007.08.020.

    Article  CAS  Google Scholar 

  122. Peacock EE, Nelson RK, Solow AR, Warren JD, Baker JL, Reddy CM. The West Falmouth oil spill: ∼100 kg of oil found to persist decades later. Environ Forensic. 2005;6(3):273–81. https://doi.org/10.1080/15275920500194480.

    Article  CAS  Google Scholar 

  123. Philip JR. Periodic nonlinear diffusion: an integral relation and its physical consequences. Aust J Phys. 1973;26:513–9.

    Google Scholar 

  124. Prince, et al. Bioremediation of the Exxon Valdez oil spill: monitoring safety and efficacy. In: Hinchee RE, et al., editors. Hydrocarbon bioremediation. Boca Raton, FL: Lewis Publishers; 1994.

    Google Scholar 

  125. Prince R, et al. Bioremediation of stranded oil on an Arctic shoreline, 303–312 pp; 2003. https://doi.org/10.1016/S1353-2561(03)00036-7.

    Book  Google Scholar 

  126. Prince RC, Amande TJ, McGenity TJ. Prokaryotic hydrocarbon degraders. Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. 2018;1-41.

  127. Prince RC, Atlas RM. Bioremediation of marine oil spills. In: Steffan R, editor. Consequences of microbial interactions with hydrocarbons, oils, and lipids: biodegradation and bioremediation. Cham: Springer International Publishing; 2018. p. 1–25. https://doi.org/10.1007/978-3-319-44535-9_13-1.

    Chapter  Google Scholar 

  128. Prince RC, Bragg JR. Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediation J. 1997;1(2):97–104. https://doi.org/10.1080/10889869709351324.

    Article  Google Scholar 

  129. Prince RC, Butler JD. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environ Sci Pollut Res Int. 2014;21(16):9506–10. https://doi.org/10.1007/s11356-013-2053-7.

    Article  CAS  Google Scholar 

  130. Prince RC, Butler JD, Redman AD. The rate of crude oil biodegradation in the sea. Environ Sci Technol. 2017;51(3):1278–84. https://doi.org/10.1021/acs.est.6b03207.

    Article  CAS  Google Scholar 

  131. Prince, R. C., J. R. Clark, J. E. Lindstrom (2015) Field studies demonstrating the efficacy of bioremediation in marine environments. In Hydrocarbon and lipid microbiology protocols, edited, pp. 81-93, Springer.

  132. Prince RC, Elmendorf DL, Lute JR, Hsu CS, Haith CE, Senius GJ. 17(H), 21(H)-hopane as a conserved internal biomarker for estimating the biodegradation of crude oil. Environ Sci Technol. 1994;28:142–5.

    CAS  Google Scholar 

  133. Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FC, Nedwed TJ. The primary biodegradation of dispersed crude oil in the sea. Chemosphere. 2013;90(2):521–6. https://doi.org/10.1016/j.chemosphere.2012.08.020.

    Article  CAS  Google Scholar 

  134. Prince RC, Owens EH, Sergy GA. Weathering of an Arctic oil spill over 20 years: the BIOS experiment revisited. Mar Pollut Bull. 2002;44:1236–42.

    CAS  Google Scholar 

  135. Prince, R. C., C. C. Walters (2016) Biodegradation of oil hydrocarbons and its implications for source identification. In Standard handbook oil spill environmental forensics, edited, pp. 869-916, Elsevier.

  136. Prosser CM, Redman AD, Prince RC, Paumen ML, Letinski DJ, Butler JD. Evaluating persistence of petroleum hydrocarbons in aerobic aqueous media. Chemosphere. 2016;155:542–9. https://doi.org/10.1016/j.chemosphere.2016.04.089.

    Article  CAS  Google Scholar 

  137. Qian K, Edwards KE, Siskin M, Olmstead WN, Mennito AS, Dechert GJ, et al. Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy Fuel. 2007;21(2):1042–7. https://doi.org/10.1021/ef060360t.

    Article  CAS  Google Scholar 

  138. Reddy CM. Oil in our coastal back yard. Oceanus Magazine. 2004;43(1).

  139. Reitsma S, Kueper BH. Laboratory measurement of capillary pressure-saturation relationships in a rock fracture. Water Resour Res. 1994;30(4):865–78.

    Google Scholar 

  140. Ribicic D, McFarlin KM, Netzer R, Brakstad OG, Winkler A, Throne-Holst M, et al. Oil type and temperature dependent biodegradation dynamics—combining chemical and microbial community data through multivariate analysis. BMC Microbiol. 2018;18(1):83. https://doi.org/10.1186/s12866-018-1221-9.

    Article  CAS  Google Scholar 

  141. Riedl RJ, Huang N, Machan R. The subtidale pump: a mechanism of interstitial water exchange by water action. Mar Biol. 1972;13:210–21.

    Google Scholar 

  142. Robinson C, Brovelli A, Barry D, Li L. Tidal influence on BTEX biodegradation in sandy coastal aquifers. Adv Water Resour. 2009;32(1):16–28.

    Google Scholar 

  143. Rosenberg E, Ron EZ. Bioremediation of petroleum contamination. In: Crawford DL, Crawford RL, editors. Bioremediation: principles and applications. Cambridge: Cambridge University Press; 1996. p. 100–24. https://doi.org/10.1017/CBO9780511608414.006.

    Chapter  Google Scholar 

  144. Rouse JD, Sabatini DA, Suflita JM, Harwell JH. Influence of surfactants on microbial degradation of organic compounds. Crit Rev Environ Sci Technol. 1994;24(4):325–70. https://doi.org/10.1080/10643389409388471.

    Article  CAS  Google Scholar 

  145. Ryan RJ, Boufadel MC. Evaluation of streambed hydraulic conductivity heterogeneity in an urban watershed. Stoch Env Res Risk A. 2006;21(4):309–16.

    Google Scholar 

  146. Saadoun IM, Al-Ghzawi ZD. Bioremediation of petroleum contamination. Bioremediation of aquatic and terrestrial ecosystems. 2005;173.

  147. Scheidweiler D, Peter H, Pramateftaki P, de Anna P, Battin TJ. Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments. The ISME Journal. 2019;13(7):1700–10. https://doi.org/10.1038/s41396-019-0381-4.

    Article  CAS  Google Scholar 

  148. Schwarzenbach RP, Gschwend PM. Environmental organic chemistry: John Wiley & Sons; 2016.

  149. Sharifi Y, Van Aken B, Boufadel MC. The effect of pore water chemistry on the biodegradation of the Exxon Valdez oil spill, edited, pp. In: 157–168, vol. 2. Netherlands: Springer; 2011. p. 157–68. https://doi.org/10.1007/s12403-010-0033-4.

    Chapter  Google Scholar 

  150. Slichter CS. Theoretical investigations of the motions of groundwater. Rep. 1898; 295–384 pp.

  151. Snoeyink, V. L., and D. Jenkins (1980), Water chemistry, John Wiley.

  152. Steenhuis TS, Ritsema CJ, Dekker LW. Fingered flow in unsaturated soil: from nature to model—introduction. Geoderma. 1996;70(2–4):83–5. https://doi.org/10.1016/S0016-7061(96)90000-2.

    Article  Google Scholar 

  153. Storrie J. Montara wellhead platform oil spill—a remote area response, paper presented at international oil spill conference proceedings (IOSC): American Petroleum Institute; 2011.

    Google Scholar 

  154. Sun J, Khelifa A, Zhao C, Zhao D, Wang Z. Laboratory investigation of oil-suspended particulate matter aggregation under different mixing conditions. Sci Total Environ. 2014;473:742–9.

    Google Scholar 

  155. Sun J, Zheng X. A review of oil-suspended particulate matter aggregation—a natural process of cleansing spilled oil in the aquatic environment. J Environ Monit. 2009;11(10):1801–9.

    CAS  Google Scholar 

  156. Tavassoli T, Mousavi SM, Shojaosadati SA, Salehizadeh H. Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel. 2012;93:142–8. https://doi.org/10.1016/j.fuel.2011.10.021.

    Article  CAS  Google Scholar 

  157. Taylor E, Reimer D. Oil persistence on beaches in Prince William Sound—a review of SCAT surveys conducted from 1989 to 2002. Marine Pollution Bulletin. 2008;56(3):458–74. https://doi.org/10.1016/j.marpolbul.2007.11.008.

    Article  CAS  Google Scholar 

  158. Tibbett M, George SJ, Davie A, Barron A, Milton N, Greenwood PF. Just add water and salt: the optimisation of petrogenic hydrocarbon biodegradation in soils from semi-arid Barrow Island, Western Australia. Water Air and Soil Pollution. 2011;216(1–4):513–25. https://doi.org/10.1007/s11270-010-0549-z.

    Article  CAS  Google Scholar 

  159. USBR (1978), Drainage manual: a water resources technical publication Rep.

    Google Scholar 

  160. van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892–8.

    Google Scholar 

  161. Vaughan D, Malcolm RE. Soil organic matter and biological activity. Dordrecht: Kluwer Academic; 1985.

    Google Scholar 

  162. Venosa A, Lee K, Suidan M, Garcia-Blanco S, Cobanli SE, Moteleb M, et al. Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on the St.Lawrence River, 261–281 pp. 2002. https://doi.org/10.1080/10889860290777602.

    CAS  Google Scholar 

  163. Venosa A, Suidan M, Wrenn B, Strohmeier K, Haines J, Eberhart B, et al. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol. 1996;30:12.

    Google Scholar 

  164. Venosa AD, Campo P, Suidan MT. Biodegradability of lingering crude oil 19 years after the Exxon Valdez oil spill. Environ Sci Technol. 2010;44(19):7613–21. https://doi.org/10.1021/es101042h.

    Article  CAS  Google Scholar 

  165. Walworth JL, Woolard CR, Braddock JF, Reynolds CM. Enhancement and inhibition of soil petroleum biodegradation through the use of fertilizer nitrogen: an approach to determining optimum levels. Journal of Soil Contamination. 1997;6(5):465–80. https://doi.org/10.1080/15320389709383580.

    Article  CAS  Google Scholar 

  166. Wang J, Sandoval K, Ding Y, Stoeckel D, Minard-Smith A, Andersen G, et al. Biodegradation of dispersed Macondo crude oil by indigenous Gulf of Mexico microbial communities. Sci Total Environ. 2016;557:453–68.

    Google Scholar 

  167. Wang J, Wan W. Kinetic models for fermentative hydrogen production: a review. Int J Hydrog Energy. 2009;34(8):3313–23.

    CAS  Google Scholar 

  168. Wang Z, Fingas M, Owens E, Sigouin L, Brown C. Long-term fate and persistence of the spilled Metula oil in a marine salt marsh environment: degradation of petroleum biomarkers. J Chromatogr A. 2001;926(2):275–90.

    CAS  Google Scholar 

  169. Ward CP, Sharpless CM, Valentine DL, French-McCay DP, Aeppli C, White HK, et al. Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil. Environ Sci Technol. 2018;52(4):1797–805.

    CAS  Google Scholar 

  170. Weiss J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena. 1991;48(2–3):273–94.

    Google Scholar 

  171. Wentworth, C. K., and G. A. Macdonald (1953), Structures and forms of basaltic rocks in Hawaii. Rep., US Govt. Print. Off.

  172. Wise WR, Clement TP, Molz FJ. Variably saturated modeling of transient drainage: sensitivity to soil properties. J Hydrol. 1994;161:91–108.

    Google Scholar 

  173. Xia Y, Li H, Boufadel MC, Sharifi Y. Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach. Water Resour Res. 2010;46:W10528. https://doi.org/10.1029/2010WR009179.

    Article  Google Scholar 

  174. Yagi JM, Suflita JM, Gieg LM, DeRito CM, Jeon C-O, Madsen EL. Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers. Appl Environ Microbiol. 2010;76(10):3124–34.

    CAS  Google Scholar 

  175. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol. 2005;7(9):1426–41. https://doi.org/10.1111/j.1462-5822.2005.00829.x.

    Article  CAS  Google Scholar 

  176. Yakimov MM, Gentile G, Bruni V, Cappello S, D'Auria G, Golyshin PN, et al. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol. 2004;49(3):419–32. https://doi.org/10.1016/j.femsec.2004.04.018.

    Article  CAS  Google Scholar 

  177. Yang J, Graf T, Ptak T. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: a three-dimensional modeling study. J Contaminant Hydrol. 2015;177:107–21.

    Google Scholar 

  178. Yu X, Xin P, Lu C. Seawater intrusion and retreat in tidally-affected unconfined aquifers: laboratory experiments and numerical simulations. Adv Water Resour. 2019;132:103393.

    Google Scholar 

  179. Zhang H, Khatibi M, Zheng Y, Lee K, Li Z, Mullin JV. Investigation of OMA formation and the effect of minerals. Mar Pollut Bull. 2010;60(9):1433–41. https://doi.org/10.1016/j.marpolbul.2010.05.014.

    Article  CAS  Google Scholar 

  180. Zhao L, Boufadel M, Katz J, Haspel G, Lee K, King T, et al. A new mechanism of sediment attachment to oil in turbulent flows: projectile particles. 2017. https://doi.org/10.1021/acs.est.7b02032.

    CAS  Google Scholar 

  181. Zhao L, Boufadel MC, Geng X, Lee K, King T, Robinson B, et al. A-DROP: a predictive model for the formation of oil particle aggregates (OPAs). Mar Pollut Bull. 2016;106(1):245–59.

    CAS  Google Scholar 

  182. Zhu X, Venosa AD, Suidan MT, Lee K. Guidelines for the bioremediation of marine shorelines and freshwater wetlands. In: US Environmental Protection Agency; 2001. http://www.epa.gov/oilspill/pdfs/bioremed.pdf.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Multi Partner Research Initiative project Oil Translocation from the Department of Fisheries and Oceans, Canada. However, it does not necessarily reflect the views of the funding entity, no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Boufadel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sediment Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufadel, M., Geng, X., An, C. et al. A Review on the Factors Affecting the Deposition, Retention, and Biodegradation of Oil Stranded on Beaches and Guidelines for Designing Laboratory Experiments. Curr Pollution Rep 5, 407–423 (2019). https://doi.org/10.1007/s40726-019-00129-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-019-00129-0

Keywords

Navigation