Skip to main content
Log in

Osmotic Membrane Bioreactor and Its Hybrid Systems for Wastewater Reuse and Resource Recovery: Advances, Challenges, and Future Directions

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment process, has been recently developed to advance wastewater treatment and reuse. During OMBR operation, driven by osmotic pressure gradient, biologically treated water transports from the mixed liquor, through a semi-permeable FO membrane, into a highly concentrated draw solution. Compared to conventional MBR, OMBR has several advantages, including better product water quality, lower fouling propensity, and higher fouling reversibility. OMBR can be operated in the osmotic dilution mode when the draw solution, such as liquid fertilizers or seawater, can be reused or discharged directly. In most cases, OMBR is integrated with an additional process, commonly including reverse osmosis, membrane distillation, and electrodialysis, to form hybrid systems for sustainably reconcentrating draw solutions and producing clean water for reuse. In addition, several membrane processes, such as microfiltration, ultrafiltration, and electrodialysis, are combined with OMBR to address its inherent issue, salinity build-up in the bioreactor, and achieve resource (e.g., nutrients and energy) recovery. This review aims to provide a comprehensive understanding on the performance of OMBR and its hybrid systems in wastewater reuse and resource recovery. OMBR analogs and their performance are also systematically introduced. Key technical challenges and their potential solutions to the further development of OMBR and its hybrid systems are highlighted. This review sheds light on future research for the further development of OMBR and its hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Judd S. The status of membrane bioreactor technology. Trends Biotechnol. 2008;26(2):109–16. https://doi.org/10.1016/j.tibtech.2007.11.005.

    Article  CAS  Google Scholar 

  2. Hai FI, Yamamoto K, Lee CH. Membrane biological reactors: theory, modeling, design, management and applications to wastewater reuse. London: IWA Publishing; 2014.

    Google Scholar 

  3. Besha AT, Gebreyohannes AY, Tufa RA, Bekele DN, Curcio E, Giorno L. Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: a review. J Environ Chem Eng. 2017;5(3):2395–414. https://doi.org/10.1016/j.jece.2017.04.027.

    Article  CAS  Google Scholar 

  4. Holloway RW, Achilli A, Cath TY. The osmotic membrane bioreactor: a critical review. Environ Sci: Water Res Technol. 2015;1(5):581–605.

    CAS  Google Scholar 

  5. Wang X, Chang VWC, Tang CY. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. J Membr Sci. 2016;504:113–32. https://doi.org/10.1016/j.memsci.2016.01.010.

    Article  CAS  Google Scholar 

  6. Luo W, Hai FI, Price WE, Nghiem LD. Water extraction from mixed liquor of an aerobic bioreactor by forward osmosis: membrane fouling and biomass characteristics assessment. Sep Purif Technol. 2015;145:56–62. https://doi.org/10.1016/j.seppur.2015.02.044.

    Article  CAS  Google Scholar 

  7. Achilli A, Cath TY, Marchand EA, Childress AE. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination. 2009;239(1-3):10–21. https://doi.org/10.1016/j.desal.2008.02.022.

    Article  CAS  Google Scholar 

  8. Mi B, Elimelech M. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J Membr Sci. 2010;348(1–2):337–45. https://doi.org/10.1016/j.memsci.2009.11.021.

    Article  CAS  Google Scholar 

  9. Kim Y, Chekli L, Shim WG, Phuntsho S, Li S, Ghaffour N, et al. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system. Bioresour Technol. 2016;210:26–34. https://doi.org/10.1016/j.biortech.2016.02.019.

    Article  CAS  Google Scholar 

  10. Ansari AJ, Hai FI, Price WE, Nghiem LD. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis. Sep Purif Technol. 2016;163:1–7. https://doi.org/10.1016/j.seppur.2016.02.031.

    Article  CAS  Google Scholar 

  11. • Wang XH, Yuan B, Chen Y, Li XF, Ren YP. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up. Bioresour Technol. 2014;167:116–23. This study, for the first time, integrated microfiltration membrane with osmotic membrane bioreactor to control salinity build-up in the bioreactor and thus improve the system performance.

    Article  CAS  Google Scholar 

  12. Holloway RW, Wait AS, Fernandes da Silva A, Herron J, Schutter MD, Lampi K, et al. Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors. Desalination. 2015;363:64–74. https://doi.org/10.1016/j.desal.2014.05.040.

    Article  CAS  Google Scholar 

  13. • Lu Y, He Z. Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor-electrodialysis system. Environ. Sci. Technol. 2015;49(17):10529–35. This study, for the first time, investigated the performance of electrodialysis for mitigating salinity build-up in the bioreactor during the operation of osmotic membrane bioreactor (OMBR). The extracted salts were sucessfully reused as the draw solutes for OMBR. https://doi.org/10.1021/acs.est.5b01243.

    Article  CAS  Google Scholar 

  14. • Luo W, Hai FI, Price WE, Guo W, Ngo HH, Yamamoto K, et al. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system. Bioresour Technol. 2016;200:297–304. In this study, an osmotic membrane bioreactor - reverse osmosis hybrid system integrated with peridic microfiltration extraction was evaluated with the aim to simultaneously recover phosphorus and clean water from raw sewage.

    Article  CAS  Google Scholar 

  15. Lay WC, Liu Y, Fane AG. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: a review. Water Res. 2010;44(1):21–40. https://doi.org/10.1016/j.watres.2009.09.026.

    Article  CAS  Google Scholar 

  16. Luo W, Hai FI, Price WE, Guo W, Ngo HH, Yamamoto K, et al. High retention membrane bioreactors: challenges and opportunities. Bioresour Technol. 2014;167:539–46. https://doi.org/10.1016/j.biortech.2014.06.016.

    Article  CAS  Google Scholar 

  17. Qiu G, Zhang S, Srinivasa Raghavan DS, Das S, Ting YP. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery. Water Res. 2016;105:370–82. https://doi.org/10.1016/j.watres.2016.09.017.

    Article  CAS  Google Scholar 

  18. Hou D, Lu L, Ren ZJ. Microbial fuel cells and osmotic membrane bioreactors have mutual benefits for wastewater treatment and energy production. Water Res. 2016;98:183–9. https://doi.org/10.1016/j.watres.2016.04.017.

    Article  CAS  Google Scholar 

  19. Chekli L, Kim Y, Phuntsho S, Li S, Ghaffour N, Leiknes T, et al. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions. J Environ Manag. 2017;187:137–45. https://doi.org/10.1016/j.jenvman.2016.11.021.

    Article  CAS  Google Scholar 

  20. Wang J, Pathak N, Chekli L, Phuntsho S, Kim Y, Li D, et al. Performance of a novel fertilizer-drawn forward osmosis aerobic membrane bioreactor (FDFO-MBR): mitigating salinity build-up by integrating microfiltration. Water. 2017;9(1):21–34. https://doi.org/10.3390/w9010021.

    Article  Google Scholar 

  21. Luo W, Hai FI, Price WE, Elimelech M, Nghiem LD. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. J Membr Sci. 2016;514:636–45. https://doi.org/10.1016/j.memsci.2016.05.023.

    Article  CAS  Google Scholar 

  22. Shahzad MA, Khan SJ, Siddique MS. Draw solution recovery using direct contact membrane distillation (DCMD) from osmotic membrane bioreactor (Os-MBR). J Water Process Eng. 2017; https://doi.org/10.1016/j.jwpe.2017.08.022.

  23. Chen L, Gu Y, Cao C, Zhang J, Ng JW, Tang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Res. 2014;50:114–23. https://doi.org/10.1016/j.watres.2013.12.009.

    Article  CAS  Google Scholar 

  24. Gu Y, Chen L, Ng JW, Lee C, Chang VWC, Tang CY. Development of anaerobic osmotic membrane bioreactor for low-strength wastewater treatment at mesophilic condition. J Membr Sci. 2015;490:197–208. https://doi.org/10.1016/j.memsci.2015.04.032.

    Article  CAS  Google Scholar 

  25. Wang X, Wang C, Tang CY, Hu T, Li X, Ren Y. Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. J Membr Sci. 2017;527:1–7. https://doi.org/10.1016/j.memsci.2016.12.062.

    Article  CAS  Google Scholar 

  26. Wu Y, Wang X, Tay MQX, Oh S, Yang L, Tang C, et al. Metagenomic insights into the influence of salinity and cytostatic drugs on the composition and functional genes of microbial community in forward osmosis anaerobic membrane bioreactors. Chem Eng J. 2017;326:462–9. https://doi.org/10.1016/j.cej.2017.05.172.

    Article  CAS  Google Scholar 

  27. Hu T, Wang X, Wang C, Li X, Ren Y. Impacts of inorganic draw solutes on the performance of thin-film composite forward osmosis membrane in a microfiltration assisted anaerobic osmotic membrane bioreactor. RSC Adv. 2017;7(26):16057–63. https://doi.org/10.1039/C7RA01524K.

    Article  CAS  Google Scholar 

  28. Nguyen NC, Chen SS, Nguyen HT, Ngo HH, Guo W, Hao CW, et al. Applicability of a novel osmotic membrane bioreactor using a specific draw solution in wastewater treatment. Sci Total Environ. 2015;518-519:586–94. https://doi.org/10.1016/j.scitotenv.2015.03.011.

    Article  CAS  Google Scholar 

  29. Nguyen NC, Nguyen HT, Chen SS, Ngo HH, Guo W, Chan WH, et al. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse. Bioresour Technol. 2016;209:8–15. https://doi.org/10.1016/j.biortech.2016.02.102.

    Article  CAS  Google Scholar 

  30. Linares RV, Li Z, Yangali-Quintanilla V, Li Q, Vrouwenvelder JS, Amy GL, et al. Hybrid SBR–FO system for wastewater treatment and reuse: operation, fouling and cleaning. Desalination. 2016;393:31–8. https://doi.org/10.1016/j.desal.2016.03.015.

    Article  CAS  Google Scholar 

  31. Luo W, Hai FI, Kang J, Price WE, Nghiem LD, Elimelech M. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system. Chemosphere. 2015;136:125–32. https://doi.org/10.1016/j.chemosphere.2015.04.082.

    Article  CAS  Google Scholar 

  32. Buer T, Cumin J. MBR module design and operation. Desalination. 2010;250(3):1073–7. https://doi.org/10.1016/j.desal.2009.09.111.

    Article  CAS  Google Scholar 

  33. Shi L, Chou SR, Wang R, Fang WX, Tang CY, Fane AG. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. J Membr Sci. 2011;382(1–2):116–23. https://doi.org/10.1016/j.memsci.2011.07.045.

    Article  CAS  Google Scholar 

  34. Wang X, Zhao Y, Li X, Ren Y. Performance evaluation of a microfiltration-osmotic membrane bioreactor (MF-OMBR) during removing silver nanoparticles from simulated wastewater. Chem Eng J. 2017;313:171–8. https://doi.org/10.1016/j.cej.2016.12.077.

    Article  CAS  Google Scholar 

  35. • Holloway RW, Regnery J, Cath TY, Nghiem LD. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor. Environ Sci Technol. 2014;48(18):10859–68. In this study, a pilot-scale ultrafiltration - osmotic membrane bioreactor (OMBR) was invesigated for the removal of nutrients and trace organic contaminants from real municipal wastewater. This study shows the potential to scale up OMBR hybrid system for avdanced wastewater treatment and reuse. https://doi.org/10.1021/es501051b.

    Article  CAS  Google Scholar 

  36. Liu J, Wang X, Wang Z, Lu Y, Li X, Ren Y. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater. Water Res. 2017;110:74–82. https://doi.org/10.1016/j.watres.2016.12.012.

    Article  CAS  Google Scholar 

  37. Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res. 2007;41(11):2271–300. https://doi.org/10.1016/j.watres.2007.02.030.

    Article  CAS  Google Scholar 

  38. Holloway RW, Childress AE, Dennett KE, Cath TY. Forward osmosis for concentration of anaerobic digester centrate. Water Res. 2007;41(17):4005–14. https://doi.org/10.1016/j.watres.2007.05.054.

    Article  CAS  Google Scholar 

  39. Nguyen NC, Chen SS, Nguyen HT, Ray SS, Ngo HH, Guo W, et al. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment. Water Res. 2016;91:305–13. https://doi.org/10.1016/j.watres.2016.01.024.

    Article  CAS  Google Scholar 

  40. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–7. https://doi.org/10.1126/science.1127291.

    Article  CAS  Google Scholar 

  41. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473-474:619–41. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  Google Scholar 

  42. Luo W, Phan HV, Xie M, Hai FI, Price WE, Elimelech M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal. Water Res. 2017;109:122–34. https://doi.org/10.1016/j.watres.2016.11.036.

    Article  CAS  Google Scholar 

  43. Qiu G, Ting YP. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour Technol. 2014;170:221–9. https://doi.org/10.1016/j.biortech.2014.07.103.

    Article  CAS  Google Scholar 

  44. Qiu G, Law Y, Das S, Ting Y. Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution. Environ Sci Technol. 2015;49(10):6156–63. https://doi.org/10.1021/es504554f.

    Article  CAS  Google Scholar 

  45. Siles JA, Brekelmans J, Martin MA, Chica AF, Martin A. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion. Bioresour Technol. 2010;101(23):9040–8. https://doi.org/10.1016/j.biortech.2010.06.163.

    Article  CAS  Google Scholar 

  46. Hou D, Lu L, Sun D, Ge Z, Huang X, Cath TY, et al. Microbial electrochemical nutrient recovery in anaerobic osmotic membrane bioreactors. Water Res. 2017;114:181–8. https://doi.org/10.1016/j.watres.2017.02.034.

    Article  CAS  Google Scholar 

  47. Qiu G, Ting YP. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics. Bioresour Technol. 2013;150:287–97. https://doi.org/10.1016/j.biortech.2013.09.090.

    Article  CAS  Google Scholar 

  48. Luo W, Phan HV, Li G, Hai FI, Price WE, Elimelech M, et al. An osmotic membrane bioreactor-membrane distillation system for simultaneous wastewater reuse and seawater desalination: performance and implications. Environ Sci Technol. 2018;51:14311–20.

    Article  Google Scholar 

  49. Choi JH, Fukushi K, Yamamoto K. Comparison of treatment efficiency of submerged nanofiltration membrane bioreactors using cellulose triacetate and polyamide membrane. Water Sci Technol. 2005;51(6–7):305–12.

    CAS  Google Scholar 

  50. Yamano N, Nakayama A, Kawasaki N, Yamamoto N, Aiba S. Mechanism and characterization of polyamide 4 degradation by pseudomonas sp. J Polym Environ. 2008;16(2):141–6. https://doi.org/10.1007/s10924-008-0090-y.

    Article  CAS  Google Scholar 

  51. Luo W, Xie M, Hai FI, Price WE, Nghiem LD. Biodegradation of cellulose triacetate and polyamide forward osmosis membranes in an activated sludge bioreactor: observations and implications. J Membr Sci. 2016;510:284–92. https://doi.org/10.1016/j.memsci.2016.02.066.

    Article  CAS  Google Scholar 

  52. Zhang Q, Jie YW, Loong WL, Zhang J, Fane AG, Kjelleberg S, et al. Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). Water Res. 2014;58:141–51. https://doi.org/10.1016/j.watres.2014.03.052.

    Article  CAS  Google Scholar 

  53. Mazlan NM, Marchetti P, Maples HA, Gu B, Karan S, Bismarck A, et al. Organic fouling behaviour of structurally and chemically different forward osmosis membranes: a study of cellulose triacetate and thin film composite membranes. J Membr Sci. 2016;520:247–61. https://doi.org/10.1016/j.memsci.2016.07.065.

    Article  CAS  Google Scholar 

  54. Wang X, Hu T, Wang Z, Li X, Ren Y. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Res. 2017;123:505–12. https://doi.org/10.1016/j.watres.2017.07.011.

    Article  CAS  Google Scholar 

  55. • Holloway RW, Miller-Robbie L, Patel M, Stokes JR, Munakata-Marr J, Dadakis J, et al. Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. J Membr Sci. 2016;507:165–78. This study compared the ultrafiltration - osmotic membrane bioreactor (OMBR) with reverse osmosis (RO) for draw solution recovery and clean water production with conventional technology in potable water reuse. Results from this study guide the future studies to make the OMBR hybrid system economically viable by developing highly permeable forward osmosis membranes and utilizing energy recovery device for RO.

    Article  CAS  Google Scholar 

  56. Liu C, Fang W, Chou S, Shi L, Fane AG, Wang R. Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions. Desalination. 2013;308:147–53. https://doi.org/10.1016/j.desal.2012.07.027.

    Article  CAS  Google Scholar 

  57. Xiao P, Nghiem LD, Yin Y, Li XM, Zhang M, Chen G, et al. A sacrificial-layer approach to fabricate polysulfone support for forward osmosis thin-film composite membranes with reduced internal concentration polarisation. J Membr Sci. 2015;481:106–14. https://doi.org/10.1016/j.memsci.2015.01.036.

    Article  CAS  Google Scholar 

  58. Jensen MO, Mouritsen OG. Single-channel water permeabilities of Escherichia Coli aquaporins AqpZ and GlpF. Biophys J. 2006;90(7):2270–84. https://doi.org/10.1529/biophysj.105.073965.

    Article  CAS  Google Scholar 

  59. Luo W, Xie M, Song X, Guo W, Ngo HH, Zhou J, et al. Biomimetic aquaporin membranes for osmotic membrane bioreactors: membrane performance and contaminant removal. Bioresour Technol. 2018;249:62–8. https://doi.org/10.1016/j.biortech.2017.09.170.

    Article  CAS  Google Scholar 

  60. Alturki A, McDonald J, Khan SJ, Hai FI, Price WE, Nghiem LD. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresour Technol. 2012;113:201–6. https://doi.org/10.1016/j.biortech.2012.01.082.

    Article  CAS  Google Scholar 

  61. Xie M, Nghiem LD, Price WE, Elimelech M. A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations. Environ Sci Technol. 2013;47(23):13486–93. https://doi.org/10.1021/es404056e.

    Article  CAS  Google Scholar 

  62. Altaee A, Zaragoza G, van Tonningen HR. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination. 2014;336:50–7. https://doi.org/10.1016/j.desal.2014.01.002.

    Article  CAS  Google Scholar 

  63. Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18. https://doi.org/10.1016/j.desal.2011.08.027.

    Article  CAS  Google Scholar 

  64. Tijing LD, Woo YC, Choi J-S, Lee S, Kim S-H, Shon HK. Fouling and its control in membrane distillation: a review. J Membr Sci. 2015;475:215–44. https://doi.org/10.1016/j.memsci.2014.09.042.

    Article  CAS  Google Scholar 

  65. McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer--can this be achieved? Environ Sci Technol. 2011;45(17):7100–6. https://doi.org/10.1021/es2014264.

    Article  CAS  Google Scholar 

  66. Camacho L, Dumée L, Zhang J, Li J-d, Duke M, Gomez J, et al. Advances in membrane distillation for water desalination and purification applications. Water. 2013;5(1):94–196. https://doi.org/10.3390/w5010094.

    Article  Google Scholar 

  67. Xu T, Huang C. Electrodialysis-based separation technologies: a critical review. AICHE J. 2008;54(12):3147–59. https://doi.org/10.1002/aic.11643.

    Article  CAS  Google Scholar 

  68. Zhang Y, Pinoy L, Meesschaert B, Van der Bruggen B. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system. Environ Sci Technol. 2013;47(18):10548–55. https://doi.org/10.1021/es402534m.

    Article  CAS  Google Scholar 

  69. Ortiz J, Exposito E, Gallud F, Garciagarcia V, Montiel V, Aldaz A. Desalination of underground brackish waters using an electrodialysis system powered directly by photovoltaic energy. Solar Energy Mater Solar Cells. 2008;92(12):1677–88. https://doi.org/10.1016/j.solmat.2008.07.020.

    Article  CAS  Google Scholar 

  70. Wang XH, Chen Y, Yuan B, Li XF, Ren YP. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor. Bioresour Technol. 2014;161(0):340–7. https://doi.org/10.1016/j.biortech.2014.03.058.

    Article  CAS  Google Scholar 

  71. Tan J-M, Qiu G, Ting Y-P. Osmotic membrane bioreactor for municipal wastewater treatment and the effects of silver nanoparticles on system performance. J Clean Prod. 2015;88:146–51. https://doi.org/10.1016/j.jclepro.2014.03.037.

    Article  CAS  Google Scholar 

  72. Pathak N, Chekli L, Wang J, Kim Y, Phuntsho S, Li S, et al. Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge. Bioresour Technol. 2017;240:50–8. https://doi.org/10.1016/j.biortech.2017.03.069.

    Article  CAS  Google Scholar 

  73. Tadkaew N, Hai FI, McDonald JA, Khan SJ, Nghiem LD. Removal of trace organics by MBR treatment: the role of molecular properties. Water Res. 2011;45(8):2439–51. https://doi.org/10.1016/j.watres.2011.01.023.

    Article  CAS  Google Scholar 

  74. Wijekoon KC, Hai FI, Kang J, Price WE, Guo W, Ngo HH, et al. The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresour Technol. 2013;144:247–54. https://doi.org/10.1016/j.biortech.2013.06.097.

    Article  CAS  Google Scholar 

  75. Lay WCL, Zhang Q, Zhang J, McDougald D, Tang C, Wang R, et al. Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR). Sep Sci Technol. 2012;47(4):543–54. https://doi.org/10.1080/01496395.2011.630249.

    Article  CAS  Google Scholar 

  76. Zhang B, Song X, Nghiem LD, Li G, Luo W. Osmotic membrane bioreactors for wastewater reuse: performance comparison between cellulose triacetate and polyamide thin film composite membranes. J Membr Sci. 2017;539:383–91. https://doi.org/10.1016/j.memsci.2017.06.026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported under the National Natural Science Foundation of China (Project 51708547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Luo.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, B., Li, G. et al. Osmotic Membrane Bioreactor and Its Hybrid Systems for Wastewater Reuse and Resource Recovery: Advances, Challenges, and Future Directions. Curr Pollution Rep 4, 23–34 (2018). https://doi.org/10.1007/s40726-018-0080-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-018-0080-1

Keywords

Navigation