Skip to main content
Log in

Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—a Review of Current Remediation Techniques

  • Land Pollution (GM Hettiarachchi, K Scheckel, and G Toor, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Management of lands contaminated by petroleum hydrocarbons (PHC) continues to evolve, as project goals may be shifting from contaminant reduction to ecosystem restoration. Restoring soil function is vital to overall ecosystem recovery, as soils perform numerous processes that are inhibited by PHC contamination. The purpose of this review is to summarize the effects of various remediation strategies on soil properties and evaluate how those effects relate to soil functions.

Recent Findings

All remediation techniques alter soil function, and the extent of alteration is based on project-specific operational parameters. Broadly, most techniques alter soil organic matter (SOM) content and soil pH, which are important variables associated with many soil processes. Additionally, recent technological advances have made the characterization of soil microbial communities and activities more accessible, so the field continues to gain knowledge on how remediation strategies affect soil microorganisms that are vital in nutrient cycling and waste management.

Summary

This review identified soil properties and functions that are likely to be affected by each strategy and that should be monitored following successful remediation. The extent of changes in soil properties is dictated by specific implementation of remediation methods, so general comparisons between methods may not be appropriate. While important variables like SOM and pH are valuable indicators of soil function, the dynamic relationships between all soil properties should not be overlooked following soil remediation. Thus, future research on soil remediation should strive to assess changes in how soils function, in addition to contaminant removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seybold CA, Mausbach MJ, Karlen DL, Rogers HH. Quantification of soil quality. In: Lal R, Kimble JM, Follett RF, Steward BA, editors. Soil processes and the carbon cycle. Boca Raton: CRC Press; 1998.

    Google Scholar 

  2. Volchko Y, Norrman J, Rosen L, Norberg T. A minimum data set for evaluating the ecological soil functions in remediation projects. J Soils Sediments. 2014;14:1850–60. doi:10.1007/s11368-014-0939-8.

    Article  Google Scholar 

  3. Bone J, Head M, Barraclough D, Archer M, Scheib C, Flight D, et al. Soil quality assessment under emerging regulatory requirements. Environ Int. 2010;36:609–22. doi:10.1016/j.envint.2010.04.010.

    Article  CAS  Google Scholar 

  4. Dindar E, Sagban FOC, Baskaya HS. Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. Int Biodeterior Biodegrad. 2015;105:268–75. doi:10.1016/j.ibiod.2015.09.011.

    Article  CAS  Google Scholar 

  5. Wloka D, Kacprazak M, Grobelak A, Grosser A, Napora A. The impact of PAHs contamination on the physicochemical properties and microbiological activity of industrial soils. Polycycl Aromat Compd. 2015;35:372–86. doi:10.1080/10406638.2014.918887.

    Article  CAS  Google Scholar 

  6. Tang J, Wang M, Wang F, Sun Q, Zhou Q. Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci. 2011;23:845–51. doi:10.1016/S1001-0742(10)60517-7.

    Article  CAS  Google Scholar 

  7. Kisic I, Mesic S, Basic F, Brkic V, Mesic M, Durn G, et al. The effect of drilling fluids and crude oil on some chemical characteristics of soil and crops. Geoderma. 2009;149:209–16. doi:10.1016/j.geoderma.2008.11.041.

    Article  CAS  Google Scholar 

  8. Khan F, Husain T, Hejazi R. An overview and analysis of site remediation technologies. J Environ Manag. 2004;71:95–122. doi:10.1016/j.jenvman.2004.02.003.

    Article  Google Scholar 

  9. Scullion J. Remediating polluted soils. Naturwissenschaften. 2006;93:51–65. doi:10.1007/s00114-005-0079-5.

    Article  CAS  Google Scholar 

  10. Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. Ex-situ remediation technologies for environmental pollutants: a critical perspective. In: de Voogt P, editor. Reviews of environmental contamination and toxicology, Vol 236. Springer; 2016. doi:10.1007/978-3-319-20013-2_2.

  11. • Lim MW, Von Lau E, Poh PE. A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull. 2016;109:14–45. doi:10.1016/j.marpolbul.2016.04.023. This review offers a thorough, up-to-date discussion of available remediation techniques, as well as valuable insights into the future direction of soil remediation.

    Article  CAS  Google Scholar 

  12. Gan S, Von Lau E, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater. 2009;172:532–49. doi:10.1016/j.jhazmat.2009.07.118.

    Article  CAS  Google Scholar 

  13. Rushton DG, Ghaly AE, Martinell K. Assessment of Canadian regulations and remediation methods for diesel oil contaminated soils. Am J Appl Sci. 2007;4:465–78. doi:10.3844/ajassp.2007.465.478.

    Article  CAS  Google Scholar 

  14. Lister KH. Evaluation of remediation alternatives. In: Surammpalli RY, editor. Environmental and pipeline engineering. ASCE; 2000: doi: 10.1061/40507(282)29.

  15. Farag AM, Hull RN, Clements WH, Glomb S, Larson DL, Stahl R, et al. Restoration of impaired ecosystems: an ounce of prevention or a pound of cure? Integr Environ Assess Manag. 2015;12:247–52. doi:10.1002/iearn.1687.

    Article  Google Scholar 

  16. •• Wagner AM, Larson DL, DalSoglio JA, Harris JA, Labus P, Rosi-Marshall EJ, et al. A framework for establishing restoration goals for contaminated ecosystems. Integr Environ Assess Manag. 2015;12:264–72. doi:10.1002/iearn.1709. This article describes a viable framework for decision-makers that considers soil remediation and soil restoration together.

    Article  Google Scholar 

  17. • Burger J, Gochfeld M, Bunn A, Downs J, Jeitner C, Pittfield T, et al. Functional remediation components: a conceptual method of evaluating the effects of remediation on risks to ecological receptors. J Toxicol Environ Health, Part A. 2016;79:957–68. doi:10.1080/15287394.2016.1201026. This article considers the effects of remediation on short- and long-term ecological processes, with particular attention to logistical operations that often go overlooked.

    Article  CAS  Google Scholar 

  18. Heneghan L, Miller SP, Baer S, Callaham MA Jr, Montgomery J, Pavao-Zuckerman M, et al. Integrating soil ecological knowledge into restoration management. Restor Ecol. 2008;16:608–17. doi:10.1111/j.1526-100X.2008.00477.x.

    Article  Google Scholar 

  19. Callaham MA Jr, Rhoades CC, Heneghan L. A striking profile: soil ecological knowledge in restoration management and science. Restor Ecol. 2008;16:604–7. doi:10.1111/j.1526-100X.2008.00490.x.

    Article  Google Scholar 

  20. Wicke D, Reemtsma T. Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter. Chemosphere. 2010;78:996–1003. doi:10.1016/j.chemosphere.2009.12.009.

    Article  CAS  Google Scholar 

  21. Wick AF, Stahl PD, Ingram LJ, Vicklund L. Soil aggregation and organic carbon in short-term stockpiles. Soil Use Manag. 2009;25:311–9. doi:10.1111/j.1475-2743.2009.00227.x.

    Article  Google Scholar 

  22. Lorenz K, Lal R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio. Geoderma. 2007;141:294–301. doi:10.1016/j.geoderma.2007.06.008.

    Article  CAS  Google Scholar 

  23. Ussiri DAN, Lal R, Jacinthe P. Post-reclamation land use effects on properties and carbon sequestration in minesoils of southeastern Ohio. Soil Sci. 2006;171:261–71. doi:10.1097/01.ss.0000199702.68654.1e.

    Article  CAS  Google Scholar 

  24. Potter KN, Carter FS, Doll EC. Physical properties of constructed and undisturbed soils. Soil Sci Soc Am J. 1988;52:1435–8.

    Article  Google Scholar 

  25. Schroeder SA. Soil loss comparisons between reclaimed strip-mined and undisturbed grasslands in North Dakota. J Environ Qual. 1989;18:30–4.

    Article  Google Scholar 

  26. Jorgensen DW, Gardner TW. Infiltration capacity of disturbed soils: temporal change and lithologic control. Wat Res Bull. 1987;23:1161–72.

    Article  Google Scholar 

  27. Ward AD, Wells LG, Phillips RE. Infiltration through reconstructed surface mined spoils and soils. Trans ASAE. 1983;26:821–32.

    Article  Google Scholar 

  28. Lipiec J, Horn R, Pietrusiewicz J, Siczek A. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil Till Res. 2012;121:74–81. doi:10.1016/j.still.2012.01.013.

    Article  Google Scholar 

  29. Stovold RJ, Whalley WR, Harris PJ, White RP. Spatial variation in soil compaction and the burrowing activity of the earthworm Aporrectodea caliginosa. Biol Fertil Soils. 2004;39:360–5. doi:10.1007/s00374-003-0703-5.

    Article  Google Scholar 

  30. Yvan C, Stephane S, Stephane C, Pierre B, Guy R, Hubert B. Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Bio Biochem. 2012;55:93–103. doi:10.1016/j.soilbio.2012.06.013.

    Article  CAS  Google Scholar 

  31. Shestak CJ, Busse MD. Compaction alters physical but not biological indices of soil health. Soil Sci Soc Am J. 2005;69:236–46.

    Article  CAS  Google Scholar 

  32. Beylich A, Oberholzer H, Schrader S, Hoper H, Wilke B. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Till Res. 2010;109:133–43. doi:10.1016/j.stil.2010.05.010.

    Article  Google Scholar 

  33. Azubuike CC, Chikere CB, Okpokwasili GC. Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 2016;32:180. doi:10.1007/s11274-016-2137-x.

    Article  Google Scholar 

  34. Tomei MC, Dauglis AJ. Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit Rev Environ Sci Tech. 2013;43:2107–39. doi:10.1080/10643389.2012.672056.

    Article  Google Scholar 

  35. Mikkonen A, Hakala KP, Lappi K, Kondo E, Vaalam A, Suominen L. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste. Environ Pollut. 2012;162:374–80. doi:10.1016/j.envpol.2011.12.012.

    Article  CAS  Google Scholar 

  36. Hu J, Nakamura J, Richardson SD, Aitken MD. Evaluating the effects of bioremediation on genotoxicity of polycyclic aromatic hydrocarbon-contaminated soil using genetically engineered, higher eukaryotic cell lines. Environ Sci Technol. 2012;46:4607–13. doi:10.1021/es300020e.

    Article  CAS  Google Scholar 

  37. Aldrion AC, Singleton DR, Nakamura J, Shea D, Aitken MD. Improving polycyclic aromatic hydrocarbon biodegradation in contaminated soil through low-level surfactant addition after conventional bioremediation. Environ Eng Sci. 2016;33:659–70. doi:10.1089/ees.2016.0128.

    Article  Google Scholar 

  38. • Shen W, Zu N, Cui J, Wang H, Dang Z, Wu P, et al. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol Environ Saf. 2016;124:120–8. doi:10.1016/j.ecoenv.2015.10.005. This article assesses several metrics of soil ecotoxicity, and it highlights some indicators that may be widely used in future research.

    Article  CAS  Google Scholar 

  39. Sheppard PJ, Adetutu EM, Makadia TH, Ball AS. Microbial community and ecotoxicity analysis of bioremediated, weathered hydrocarbon-contaminated soil. Soil Res. 2011;49:261–9. doi:10.1071/SR10159.

    Article  CAS  Google Scholar 

  40. Larney FJ, Angers DA. The role of organic amendments in soil reclamation: a review. Can J Soil Sci. 2012;92:19–38. doi:10.4141/CJSS2010-064.

    Article  CAS  Google Scholar 

  41. Barzegar AR, Yousefi A, Daryashenas A. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil. 2002;247:295–301.

    Article  CAS  Google Scholar 

  42. Wang S, Wang X, Zhang C, Li F, Guo G. Bioremediation of oil sludge contaminated soil by landfarming with added cotton stalks. Int Biodeterior Biodegrad. 2016;106:150–6. doi:10.1016/j.ibiod.2015.10.014.

    Article  CAS  Google Scholar 

  43. Ma J, Yang Y, Dai X, Chen Y, Deng H, Zhou H, et al. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere. 2016;150:17–23. doi:10.1016/j.chemosphere.2016.01.123.

    Article  CAS  Google Scholar 

  44. Callaham MA Jr, Stewart AJ, Alarcon C, McMillen SJ. Effects of earthworm (Eisenia fetida) and wheat (Triticum aestivum) straw additions on selected properties of petroleum-contaminated soils. Environ Toxicol Chem. 2002;21:1658–63.

    Article  CAS  Google Scholar 

  45. • Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernandez T, et al. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost and amendment. J Proteom. 2016;135:162–9. doi:10.1016/j.jprot.2015.07.023. This article offers a novel approach to describing soil microbial community dynamics in contaminated soil by using metaproteomics.

    Article  CAS  Google Scholar 

  46. Besalatpour A, Hajabbasi MA, Khoshgoftarmanesh AH, Dorostkar V. Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam. 2011;20:234–48. doi:10.1080/15320383.2011.546447.

    Article  CAS  Google Scholar 

  47. Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI. Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem. 2007;39:164–77. doi:10.1016/j.soilbio.2006.06.020.

    Article  CAS  Google Scholar 

  48. Silva-Castro GA, Uad I, Rodriguez-Calvo A, Gonzalez-Lopez J, Calvo C. Response of autochthonous microbiota of diesel polluted soils to landfarming treatments. Environ Res. 2015;137:49–58. doi:10.1016/j.envres.2014.11.009.

    Article  CAS  Google Scholar 

  49. Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M. Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegrad. 2015;101:56–65. doi:10.1016/j.ibiod.2015.03.029.

    Article  CAS  Google Scholar 

  50. Regelink IC, Stoof CR, Rousseva S, Weng L, Lair GJ, Kram P, et al. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma. 2015;247–248:24–37. doi:10.1016/j.geoderma.2015.01.022.

    Article  Google Scholar 

  51. Pedron F, Petruzzelli G. Green remediation strategies to improve the quality of contaminated soils. Chem Ecol. 2011;27:89–95. doi:10.1080/02757540.2010.534086.

    Article  CAS  Google Scholar 

  52. Mikkonnen A, Kondo A, Lappi K, Wallenius K, Lindstrom K, Hartikainen H, et al. Contaminant and plant-derived changes in soil chemical and microbiological indicators during fuel oil rhizoremediation with Galega orientalis. Geoderma. 2011;160:336–46. doi:10.1016/j.geoderma.2010.10.001.

    Article  Google Scholar 

  53. Hamdi H, Benzarti S, Aoyama I, Jedidi N. Rehabilitation of degraded soils containing aged PAHs based on phytoremediation with alfalfa (Medicago sativa L.). Int Biodeterior Biodegrad. 2012;67:40–7. doi:10.1016/j.ibiod.2011.10.009.

    Article  CAS  Google Scholar 

  54. Marchand C, Hogland W, Kaczala F, Jani Y, Marchand L, Augustsson A, et al. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. Int J Phytoremediat. 2016;18:1136–47. doi:10.1080/15226514.2016.1186594.

    Article  CAS  Google Scholar 

  55. Masciandaro G, Macci C, Peruzzi E, Ceccanti B, Doni S. Organic matter-microorganism-plant in soil bioremediation: a synergic approach. Rev Environ Sci Biotechnol. 2013;12:399–419. doi:10.1007/s11157-013-9313-3.

    Article  CAS  Google Scholar 

  56. Shahsavari E, Adetutu EM, Taha M, Ball AS. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. J Environ Manag. 2015;155:171–6. doi:10.1016/j.envman.2015.03.027.

    Article  CAS  Google Scholar 

  57. Rivett MO, Wealthall GP, Dearden RA, McAlary TA. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow zone sources. J Contam Hydrol. 2011;123:130–56. doi:10.1016/j.jconhyd.2010.12.013.

    Article  CAS  Google Scholar 

  58. Balseiro-Romero M, Kidd PS, Monterroso C. Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils. Int J Phytoremediat. 2014;16:824–39. doi:10.1080/15226514.2013.856851.

    Article  CAS  Google Scholar 

  59. Sirguey C, de Silva PTS, Schwartz C, Simonnot M. Impact of chemical oxidation on soil quality. Chemosphere. 2008;72:282–9. doi:10.1016/j.chemosphere.2008.01.027.

    Article  CAS  Google Scholar 

  60. Villa RD, Trovo AG, Nogueira RFP. Environmental implications of soil remediation using the Fenton process. Chemosphere. 2008;71:43–50. doi:10.1016/j.chemosphere.2007.10.043.

    Article  CAS  Google Scholar 

  61. Wang J, Zhang X, Li G. Effects of ozonation on soil organic matter of contaminated soil containing residual oil. J Soils Sediments. 2012;12:117–27. doi:10.1007/s11368-011-0439-z.

    Article  CAS  Google Scholar 

  62. Chen K, Chang Y, Chiou W. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study. J Chem Technol Biotechnol. 2016;91:1877–88. doi:10.1002/jctb.4781.

    Article  CAS  Google Scholar 

  63. Gee GW, Or D. Particle-size analysis. In: Dane JH, Topp GC, editors. Methods of soil analysis. Part 4. Physical methods. Vol. 5. Madison: SSSA; 2002.

    Google Scholar 

  64. Laurent F, Cebron A, Schwartz C, Leyval C. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere. 2012;86:659–64. doi:10.1016/j.chemosphere.2011.11.018.

    Article  CAS  Google Scholar 

  65. • Venny GS, Ng HK. Evaluation of in situ catalysed hydrogen peroxide propagation (CHP) for phenanthrene and fluoranthene removals from soil and its associated impacts on soil functionality. Environ Sci Pollut Res. 2014;21:2888–97. doi:10.1007/s11356-013-2207-7. This article shows how chemical oxidation can be coupled with a chelating agent to promote contaminant reduction with fewer adverse effects on soil properties, especially pH.

    Article  CAS  Google Scholar 

  66. Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C. Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel. 2012;96:270–6. doi:10.1016/j.fuel.2012.01.017.

    Article  CAS  Google Scholar 

  67. Acar YB, Alshawabkeh A. Principles of electrokinetic remediation. Environ Sci Technol. 1993;27:2638–47.

    Article  CAS  Google Scholar 

  68. Zhou M, Wang H, Zhu S, Liu Y, Xu J. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility. Environ Sci Pollut Res. 2015;22:16907–13. doi:10.1007/s11356-015-4909-5.

    Article  CAS  Google Scholar 

  69. Cang L, Zhou D, Wang Q, Fan G. Impact of electrokinetic-assisted phytoremediation of heavy metal contaminated soil on its physicochemical properties, enzymatic and microbial activities. Electrochemica Acta. 2012;86:41–8. doi:10.1016/j.electacta.2012.04.112.

    Article  CAS  Google Scholar 

  70. Kim S, Han H, Lee Y, Kim C, Yang J. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Sci Total Environ. 2010;408:3162–8. doi:10.1016/j.scitotenv.2010.03.038.

    Article  CAS  Google Scholar 

  71. Lear G, Harbottle MJ, Sills G, Knowles CJ, Semple KT, Thompson IP. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environ Pollut. 2007;146:139–46. doi:10.1016/j.envpol.2006.06.037.

    Article  CAS  Google Scholar 

  72. Chen X, Shen Z, Lei Y, Zheng S, Ju B, Wang W. Effects of electrokinetics on bioavailability of soil nutrients. Soil Sci. 2006;171:638–47. doi:10.1097/01.ss.0000228038.57400.a8.

    Article  CAS  Google Scholar 

  73. Pazos M, Plaza A, Martin M, Lobo MC. The impact of electrokinetic treatment on a loamy-sand soil properties. Chem Eng J. 2012;183:231–7. doi:10.1016/j.cej.2011.12.067.

    Article  CAS  Google Scholar 

  74. Mao X, Jiang R, Xiao W, Yu J. Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater. 2015;285:419–35. doi:10.1016/j.jhazmat.2014.12.009.

    Article  CAS  Google Scholar 

  75. Liu S, Guo C, Liang X, Wu F, Dang Z. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol Environ Saf. 2016;129:210–8. doi:10.1016/j.ecoenv.2016.03.035.

    Article  CAS  Google Scholar 

  76. Chang Y, Thirumavalavan M, Lee J. Effects of PAH biodegradation in the presence of non-ionic surfactants on a bacterial community and its exoenzymatic activity. J Environ Sci Health Part A. 2010;45:421–31. doi:10.1080/10934520903540141.

    Article  CAS  Google Scholar 

  77. Lima TMS, Procopio LC, Brandao FD, Leao BA, Totla MR, Borges AC. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol. 2011;102:2957–64. doi:10.1016/j.biortech.2010.09.109.

    Article  CAS  Google Scholar 

  78. Franzetti A, Gennaro PD, Bevilacqua A, Papcchini M, Bestetti G. Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere. 2006;62:1474–80. doi:10.1016/j.chemosphere.2005.06.009.

    Article  CAS  Google Scholar 

  79. Renshaw CE, Zynda GD, Fountain JC. Permeability reductions induced by sorption of surfactant. Wat Resour Res. 1997;33:371–8.

    Article  CAS  Google Scholar 

  80. Yi YM, Sung K. Influence of washing treatment on the qualities of heavy metal-contaminated soil. Ecol Eng. 2015;81:89–92. doi:10.1016/j.ecoleng.2015.04.034.

    Article  Google Scholar 

  81. O’Brien PL, DeSutter TM, Casey FXM, Derby NE, Wick AF. Implications of using thermal desorption to remediate contaminated agricultural soil: physical characteristics and hydraulic processes. J Environ Qual. 2016;45:1430–6. doi:10.2134/jeq2015.12.0607.

    Article  Google Scholar 

  82. Sierra MJ, Millan R, Lopez FA, Alguacil FJ, Canada I. Sustainable remediation of mercury contaminated soils by thermal desorption. Environ Sci Pollut Res. 2016;23:4898–907. doi:10.1007/s11356-015-568-8.

    Article  CAS  Google Scholar 

  83. • Yi YM, Park S, Munster C, Kim G, Sung K. Changes in ecological properties of petroleum oil-contaminated soil after low-temperature thermal desorption treatment. Water Air Soil Pollut. 2016;227:108. doi:10.1007/s11270-016-2804-4. This article described a wide range of soil parameters related to soil function following thermal desorption treatment.

    Article  Google Scholar 

  84. Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biach C, Bonnard M, et al. In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytoremediat. 2011;13S1:245–63. doi:10.1080/15226514.2011.568546.

    Article  Google Scholar 

  85. Roh Y, Edwards NT, Lee SY, Stiles CA, Armes S, Foss JE. Thermal-treated soil for mercury removal: soil and phytotoxicity tests. J Environ Qual. 2000;29:415–24.

    Article  CAS  Google Scholar 

  86. •• Pape A, Switzer C, McCosh N, Knapp CW. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma. 2015;243–244:1–9. doi:10.1016/j.geoderma.2014.12.004. This paper documents the effects of heating on soil physical, chemical, and biological properties of two soil types over a range of temperatures.

    Article  Google Scholar 

  87. Cebron A, Cortet J, Criquet S, Biaz A, Calvert V, Caupert C, et al. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Res Microbiol. 2011;162:896–907. doi:10.1016/j.resmic.2011.02.011.

    Article  CAS  Google Scholar 

  88. Cebron A, Beguiristain T, Faure P, Norini M, Masfaraud J, Leyval C. Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption treated soil. Appl Environ Microbiol. 2009;75:6322–30. doi:10.1128/AEM.02862-08.

    Article  CAS  Google Scholar 

  89. Thion C, Cebron A, Beguiristain T, Leyval C. Long-term in situ dynamics of fungal communities in a multi-contaminated soil are mainly driven by plants. Microbiol Ecol. 2012;82:169–81. doi:10.1111/j.1574-6941.2012.01414.x.

    Article  CAS  Google Scholar 

  90. Bonnard M, Devin S, Leyval C, Morel J, Vasseur P. The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicol Environ Saf. 2010;73:955–60. doi:10.1016/j.ecoenv.2010.02.023.

    Article  CAS  Google Scholar 

  91. Dazy M, Ferard J, Masfaraud J. Use of a plant multiple-species experiment for assessing the habitat function of a coke factory soil before and after thermal desorption treatment. Ecol Eng. 2009;35:1493–500. doi:10.1016/j.ecoleng.2009.06.006.

    Article  Google Scholar 

  92. Hafeez F, Phillippot L, Spor A, Martin-Laurent F. Assessment of the resilience and resistance of remediated soils using denitrification as model process. J Soil Sediments. 2014;14:178–82. doi:10.10077/s11368-013-0780-5.

    Article  CAS  Google Scholar 

  93. Sutton NB, Grotenhuis T, Rijnaarts HHM. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil. Chemosphere. 2014;97:64–70. doi:10.1016/j.chemosphere.2013.11.005.

    Article  CAS  Google Scholar 

  94. Deshpande S, Shiau BJ, Wade D, Sabatini DA, Harwell JH. Surfactant selection for enhancing ex situ soil washing. Wat Res. 1999;33:351–60.

    Article  CAS  Google Scholar 

  95. Canadian Council of Ministers of the Environment. Canada-wide standards for petroleum hydrocarbons in soil. Winnipeg, MB: CCME Council of Ministers; c2008 [cited 4 Jun 2017] available from: http://www.ccme.ca/files/Resources/csm/phc_cws/phc_standard_1.0_e.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. DeSutter.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

This article is part of the Topical Collection on Land Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, P.L., DeSutter, T.M., Casey, F.X.M. et al. Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—a Review of Current Remediation Techniques. Curr Pollution Rep 3, 192–205 (2017). https://doi.org/10.1007/s40726-017-0063-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-017-0063-7

Keywords

Navigation