Skip to main content

Microbial Dynamics During the Bioremediation of Petroleum Hydrocarbon-Contaminated Soils Through Biostimulation: An Overview

  • Chapter
  • First Online:
Approaches in Bioremediation

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Soil contamination by petroleum hydrocarbons (PHCs) is currently a major concern and has attracted the interest of environmental scientists and engineers due to the threats it poses for the quality of soil ecosystem services, groundwater quality, and human health. Scientific efforts have been focused on developing viable strategies for the recovery of PHC-polluted soils in the last years. Bioremediation via biostimulation (addition of nutrients and/or electron acceptors to enhance the proliferation and activity of indigenous hydrocarbon-degrading microorganisms) has shown to be a technically viable, cost-effective, and environmentally sustainable technology. Since the study of microbial communities involved in soil biostimulation is important to identify the specific microbial characteristics that determine improved decontamination rates, we here provide a review of studies characterizing the dynamics of microbial communities (bacteria, archaea, and fungi) mediating the bioremediation of PHC-contaminated soils through biostimulation in terms of activity, abundance, and taxonomic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176(3):670–699

    Article  CAS  PubMed  Google Scholar 

  • Acosta-González A, Marqués S (2016) Bacterial diversity in oil-polluted marine coastal sediments. Curr Opin Biotechnol 38:24–32

    Article  CAS  PubMed  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmentation: a review. Int J Environ Bioremediat Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Andersson BE, Welinder L, Olsson PA, Olsson S, Henrysson T (2000) Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresour Technol 73(1):29–36

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microb Biot 32(11):180

    Article  CAS  Google Scholar 

  • Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL (2017) Persistence and biodegradation of oil at the ocean floor following deepwater horizon. Proc Natl Acad Sci U S A 114(1):E9–E18

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernandez T, von Bergen M, Garcia C (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics 135:162–169

    Article  CAS  PubMed  Google Scholar 

  • Bordoloi J, Boruah HPD (2018) Analysis of recent patenting activities in the field of bioremediation of petroleum hydrocarbon pollutants present in the environment. Recent Pat Biotechnol 12(1):3–20

    Article  CAS  PubMed  Google Scholar 

  • Brassington KJ, Hough RL, Paton GI, Semple KT, Risdon GC, Crossley J, Hay I, Askari K, Pollard SJT (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37(3):199–232

    Article  CAS  Google Scholar 

  • Brzeszcz J, Steliga T, Kapusta P, Turkiewicz A, Kaszycki P (2016) R-strategist versus K-strategist for the application in bioremediation of hydrocarbon-contaminated soils. Int Biodeterior Biodegrad 106:41–52

    Article  CAS  Google Scholar 

  • Cebron A, Beguiristain T, Bongoua-Devisme J, Denonfoux J, Faure P, Lorgeoux C, Ouvrard S, Parisot N, Peyret P, Leyval C (2015) Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Environ Sci Pollut Res Int 22(18):13724–13738

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63(2):417–431

    Article  CAS  Google Scholar 

  • Chikere CB, Surridge K, Okpokwasili GC, Cloete TE (2012) Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. Waste Manag Res 30(3):225–236

    Article  CAS  PubMed  Google Scholar 

  • Cocârţă DM, Stoian MA, Karademir A (2017) Crude oil contaminated sites: evaluation by using risk assessment approach. Sustainability 9(8):1365

    Article  CAS  Google Scholar 

  • Cole GM (2018) Assessment and remediation of petroleum contaminated sites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Covino S, Fabianova T, Kresinova Z, Cvancarova M, Burianova E, Filipova A, Voriskova J, Baldrian P, Cajthaml T (2016a) Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. J Hazard Mater 301:17–26

    Article  CAS  PubMed  Google Scholar 

  • Covino S, Stella T, D’Annibale A, Lladó S, Baldrian P, Čvančarová M, Cajthaml T, Petruccioli M (2016b) Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil. Sci Total Environ 566–567:250–259

    Article  CAS  PubMed  Google Scholar 

  • Czaplicki LM, Cooper E, Ferguson PL, Stapleton HM, Vilgalys R, Gunsch CK (2016) A new perspective on sustainable soil remediation–case study suggests novel fungal genera could facilitate in situ biodegradation of hazardous contaminants. Remediat J 26(2):59–72

    Article  CAS  Google Scholar 

  • Das R, Kazy SK (2014) Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. Environ Sci Pollut Res 21(12):7369–7389

    Article  CAS  Google Scholar 

  • de Jesus HE, Peixoto RS, Cury JC, van Elsas JD, Rosado AS (2015) Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula. Appl Microbiol Biotechnol 99(24):10815–10827

    Article  CAS  PubMed  Google Scholar 

  • Dogen A, Ilkit M, de Hoog GS (2013) Black yeast habitat choices and species spectrum on high altitude creosote-treated railway ties. Fungal Biol 117(10):692–696

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Lang Z, Kong X, Lu D, Liu Z (2015) Kinetic and multidimensional profiling of accelerated degradation of oil sludge by biostimulation. Environ Sci Process Impact 17(4):763–774

    Article  CAS  Google Scholar 

  • dos Santos JJ, Maranho LT (2018) Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: a review. J Environ Manag 210:104–113

    Article  CAS  Google Scholar 

  • Fan MY, Xie RJ, Qin G (2014) Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ Technol 35(4):391–399

    Article  CAS  PubMed  Google Scholar 

  • Federici E, Giubilei MA, Covino S, Zanaroli G, Fava F, D'Annibale A, Petruccioli M (2012) Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. New Biotechnol 30(1):69–79

    Article  CAS  Google Scholar 

  • Fowler SJ, Toth CRA, Gieg LM (2016) Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments. Front Microbiol 7:562

    Article  PubMed  PubMed Central  Google Scholar 

  • Frysinger GS, Gaines RB, Xu L, Reddy CM (2003) Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environ Sci Technol 37(8):1653–1662

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi I, Sicolo M, Franzetti A, Fontanarosa E, Santagostino A, Bestetti G (2010) Influence of compost amendment on microbial community and ecotoxicity of hydrocarbon-contaminated soils. Bioresour Technol 101(2):568–575

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez M, Košnář Z, Mercl F, Aranda E, Tlustoš P (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotox Environ Safe 147:165–174

    Article  CAS  Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerin TF, Horner S, McGovern T, Davey B (2002) An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Res 36(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Han X, Hu H, Shi X, Zhang L, He J (2017) Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. Chemosphere 172:286–293

    Article  CAS  PubMed  Google Scholar 

  • Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77(5):1804–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S, Schöftner P, Yousaf S, Wang A, Syed JH, Reichenauer TG (2018) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219

    Article  CAS  Google Scholar 

  • Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Ben Saïd O, Ghiglione J-F, Auguet J-C (2016) Response of core microbial consortia to chronic hydrocarbon contaminations in coastal sediment habitats. Front Microbiol 7:1637

    PubMed  PubMed Central  Google Scholar 

  • Joshi MN, Dhebar SV, Dhebar SV, Bhargava P, Pandit A, Patel RP, Saxena A, Bagatharia SB (2014) Metagenomics of petroleum muck: revealing microbial diversity and depicting microbial syntrophy. Arch Microbiol 196(8):531–544

    Article  CAS  PubMed  Google Scholar 

  • Ka JO, Yu Z, Mohn WW (2001) Monitoring the size and metabolic activity of the bacterial community during biostimulation of fuel-contaminated soil using competitive PCR and RT-PCR. Microb Ecol 42(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Kaczyńska G, Borowik A, Wyszkowska J (2015) Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water Air Soil Pollut 226(11):372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kankara R, Arockiaraj S, Prabhu K (2016) Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India. Mar Pollut Bull 106(1–2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80(2):305–311

    Article  CAS  PubMed  Google Scholar 

  • Kastner M, Miltner A (2016) Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl Microbiol Biotechnol 100(8):3433–3449

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee AH, Chang W (2018) Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: the rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures. Sci Total Environ 612:903–913

    Article  CAS  PubMed  Google Scholar 

  • Kotowicz J, Chmielniak T, Janusz-Szymańska K (2010) The influence of membrane CO2 separation on the efficiency of a coal-fired power plant. Energy 35(2):841–850

    Article  CAS  Google Scholar 

  • Kulkarni SV, Palande AS, Deshpande MV (2012) Bioremediation of petroleum hydrocarbons in soils. In: Satyanarayana T, Johri BN (eds) Microorganisms in environmental management: microbes and environment. Springer Netherlands, Dordrecht, pp 589–606

    Chapter  Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    Article  CAS  PubMed  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil – present works and future directions. Mar Pollut Bull 109(1):14–45

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li Q, Wang N, Liu D, Zan L, Chang L, Gou X, Wang P (2018) Bioremediation of petroleum-contaminated soil using aged refuse from landfills. Waste Manag 77:576–585

    Article  CAS  PubMed  Google Scholar 

  • Lladó S, Gràcia E, Solanas AM, Viñas M (2013) Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol Biochem 67:114–123

    Article  CAS  Google Scholar 

  • Lladó S, Covino S, Solanas AM, Petruccioli M, D’Annibale A, Viñas M (2014) Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. J Hazard Mater 283:35–43

    Article  CAS  PubMed  Google Scholar 

  • Maila MP, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants – perspective for monitoring hydrocarbon contamination: a review. Int Biodeterior Biodegrad 55(1):1–8

    Article  CAS  Google Scholar 

  • Mair J, Schinner F, Margesin R (2013) A feasibility study on the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site: effects of temperature and biostimulation. Cold Reg Sci Technol 96:122–128

    Article  Google Scholar 

  • Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35(9):860–870

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2013) Bioremediation and biodegradation of hydrocarbons by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts: biodiversity, adaptation strategies and biotechnological significance. Springer, Berlin, pp 465–480

    Google Scholar 

  • Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74(5):381–389

    Article  CAS  Google Scholar 

  • Margesin R, Hammerle M, Tscherko D (2007) Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol 53(2):259–269

    Article  CAS  PubMed  Google Scholar 

  • Masy T, Demanèche S, Tromme O, Thonart P, Jacques P, Hiligsmann S, Vogel TM (2016) Hydrocarbon biostimulation and bioaugmentation in organic carbon and clay-rich soils. Soil Biol Biochem 99:66–74

    Article  CAS  Google Scholar 

  • Mena E, Villaseñor J, Rodrigo MA, Cañizares P (2016) Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: effect of periodic polarity reversal and voltage gradient. Chem Eng J 299:30–36

    Article  CAS  Google Scholar 

  • Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74(3):669–681

    Article  CAS  PubMed  Google Scholar 

  • Mouhamadou B, Faure M, Sage L, Marcais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117(4):268–274

    Article  CAS  PubMed  Google Scholar 

  • Moussavi G, Khosravi R, Farzadkia M (2011) Removal of petroleum hydrocarbons from contaminated groundwater using an electrocoagulation process: batch and continuous experiments. Desalination 278(1):288–294

    Article  CAS  Google Scholar 

  • Nelyubov DV, Semikhina LP, Vazhenin DA, Merkul’ev IA (2017) Influence of resins and asphaltenes on the structural and rheological properties of petroleum disperse systems. Petrol Chem 57(3):203–208

    Article  CAS  Google Scholar 

  • Nicolaus EEM, Wright SR, Barry J, Bolam TPC, Ghareeb K, Ghaloom M, Al-Kanderi N, Harley BFM, Le Quesne WJF, Devlin MJ, Lyons BP (2017) Spatial and temporal analysis of the risks posed by total petroleum hydrocarbon and trace element contaminants in coastal waters of Kuwait. Mar Pollut Bull 120(1):422–427

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R, Sar P, Kazy SK (2017) Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 109(5–6):374–382

    Article  CAS  PubMed  Google Scholar 

  • Polyak YM, Bakina LG, Chugunova MV, Mayachkina NV, Gerasimov AO, Bure VM (2018) Effect of remediation strategies on biological activity of oil-contaminated soil – a field study. Int Biodeterior Biodegrad 126:57–68

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing, Cham, Switzerland https://doi.org/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing, Cham, Switzerland https://www.springer.com/us/book/9783319773858

  • Prenafeta-Boldu FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30(1):109–130

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Zhang C, Luo S, Chen W (2014) Bioremediation of highly contaminated oilfield soil: bioaugmentation for enhancing aromatic compounds removal. Front Environ Sci Eng 8(2):293–304

    Article  CAS  Google Scholar 

  • Qin G, Gong D, Fan M-Y (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegrad 85(Supplement C):150–155

    Article  CAS  Google Scholar 

  • Röling WFM, Couto de Brito IR, Swannell RPJ, Head IM (2004) Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl Environ Microbiol 70(5):2614–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safdari MS, Kariminia HR, Rahmati M, Fazlollahi F, Polasko A, Mahendra S, Wilding WV, Fletcher TH (2018) Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. J Hazard Mater 342:270–278

    Article  CAS  PubMed  Google Scholar 

  • Shahi A, Aydin S, Ince B, Ince O (2016a) Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicol Environ Saf 125:153–160

    Article  CAS  PubMed  Google Scholar 

  • Shahi A, Aydin S, Ince B, Ince O (2016b) Reconstruction of bacterial community structure and variation for enhanced petroleum hydrocarbons degradation through biostimulation of oil contaminated soil. Chem Eng J 306:60–66

    Article  CAS  Google Scholar 

  • Siles JA, Margesin R (2018) Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl Microbiol Biotechnol 102(10):4409–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siles JA, Öhlinger B, Cajthaml T, Kistler E, Margesin R (2018) Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte Iato settlement (Sicily, Italy). Sci Rep 8(1):1903

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva-Castro GA, Rodelas B, Perucha C, Laguna J, González-López J, Calvo C (2013) Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445–446:347–355

    Article  CAS  PubMed  Google Scholar 

  • Singleton DR, Jones MD, Richardson SD, Aitken MD (2013) Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97(18):8381–8391

    Article  CAS  PubMed  Google Scholar 

  • Stella T, Covino S, Čvančarová M, Filipová A, Petruccioli M, D’Annibale A, Cajthaml T (2017) Bioremediation of long-term PCB-contaminated soil by white-rot fungi. J Hazard Mater 324:701–710

    Article  CAS  PubMed  Google Scholar 

  • Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26(6):561–575

    Article  CAS  PubMed  Google Scholar 

  • Streche C, Cocârţă DM, Istrate I-A, Badea AA (2018) Decontamination of petroleum-contaminated soils using the electrochemical technique: remediation degree and energy consumption. Sci Rep 8(1):3272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suja F, Rahim F, Taha MR, Hambali N, Rizal Razali M, Khalid A, Hamzah A (2014) Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int Biodeterior Biodegrad 90(Supplement C):115–122

    Article  CAS  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79(2):619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thion C, Cebron A, Beguiristain T, Leyval C (2012) Long-term in situ dynamics of the fungal communities in a multi-contaminated soil are mainly driven by plants. FEMS Microbiol Ecol 82(1):169–181

    Article  CAS  PubMed  Google Scholar 

  • Tigini V, Prigione V, Di Toro S, Fava F, Varese GC (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Factories 8:5

    Article  CAS  Google Scholar 

  • Turgay OC, Erdogan EE, Karaca A (2010) Effect of humic deposit (leonardite) on degradation of semi-volatile and heavy hydrocarbons and soil quality in crude-oil-contaminated soil. Environ Monit Assess 170(1–4):45–58

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72(1):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandera E, Koukkou AI (2017) Bacterial community response to hydrocarbon contamination in soils and marine sediments: a critical review of case studies. In: Cravo-Laureau C, Cagnon C, Lauga B, Duran R (eds) Microbial ecotoxicology. Springer International Publishing, Cham, pp 185–226

    Chapter  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223(Supplement C):277–286

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan N, Bharathi S, Arulazhagan P (2007) Role of plasmid in the degradation of petroleum hydrocarbon by Pseudomonas fluorescens NS1. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(8):1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89(2):339–348

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li F, Zhan Y, Zhu L (2016) Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environ Sci Pollut Res 23(14):14451–14461

    Article  CAS  Google Scholar 

  • Wu Y-R, Nian D-L (2014) Production optimization and molecular structure characterization of a newly isolated novel laccase from Fusarium solani MAS2, an anthracene-degrading fungus. Int Biodeterior Biodegrad 86:382–389

    Article  CAS  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Xu Y, Lu M (2010) Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments. J Hazard Mater 183(1–3):395–401

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Zhang H, Li X, Wang Z, Xu Y, Ren S, Chen X, Xu Y, Hao H, Wang H (2013) Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresour Technol 129:264–273

    Article  CAS  PubMed  Google Scholar 

  • Yavari S, Malakahmad A, Sapari NB (2015) A review on phytoremediation of crude oil spills. Water Air Soil Pollut 226(8):18

    Article  CAS  Google Scholar 

  • Zafra G, Absalón ÁE, Cuevas MDC, Cortés-Espinosa DV (2014) Isolation and selection of a highly tolerant microbial consortium with potential for PAH biodegradation from heavy crude oil-contaminated soils. Water Air Soil Pollut 225(2):1826

    Article  CAS  Google Scholar 

  • Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV (2016) Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. J Hazard Mater 318:702–710

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Lo IMC, Yan DYS (2015) An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment. Water Res 83:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zeng J, de Hoog GS, Attili-Angelis D, Prenafeta-Boldu FX (2010) Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60(1):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Feng JQ, Zhou L, Mbadinga SM, Gu JD, Mu BZ (2018) Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 34(2):34

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z-F, Wang M-X, Zuo X-H, Yao Y-H (2017) Comparative investigation of bacterial, fungal, and archaeal community structures in soils in a typical oilfield in Jianghan, China. Arch Environ Contam Toxicol 72(1):65–77

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Taylor AA, Astor SR, Terry N (2017) Enhancing salt grass germination and growth in a saline soil contaminated with petroleum hydrocarbons. Plant Soil 412(1):189–199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Siles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siles, J.A., García-Sánchez, M. (2018). Microbial Dynamics During the Bioremediation of Petroleum Hydrocarbon-Contaminated Soils Through Biostimulation: An Overview. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_7

Download citation

Publish with us

Policies and ethics