Seibold S, Gossner MM, Simons NK, Blüthgen N, Müller J, Ambarli D, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574:671–4. https://doi.org/10.1038/s41586-019-1684-3.
CAS
Article
Google Scholar
Barbati A, Marchetti M, Chirici G, Corona P. European Forest Types and Forest Europe SFM indicators: tools for monitoring progress on forest biodiversity conservation. For Ecol Manag. 2014;321:145–57. https://doi.org/10.1016/j.foreco.2013.07.004.
Article
Google Scholar
Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, Gonzalez-Olabarria JR, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv. 2017;26:3005–35. https://doi.org/10.1007/s10531-017-1453-2.
Article
Google Scholar
Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Orihuela G, et al. Ecological meltdown in predator-free forest fragments. Science. 2001;294:1923–6. https://doi.org/10.1126/science.1064397.
CAS
Article
Google Scholar
Klapwijk MJ, Bylund H, Schroeder M, Björkman C. Forest management and natural biocontrol of insect pests. Forestry. 2016;89:253–62. https://doi.org/10.1093/forestry/cpw019.
Article
Google Scholar
Nyffeler M, Birkhofer K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci Nat. 2017;104:30. https://doi.org/10.1007/s00114-017-1440-1.
CAS
Article
Google Scholar
Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang. 2014;4:806–10. https://doi.org/10.1038/nclimate2318.
CAS
Article
Google Scholar
• Jonsson M, Kaartinen R, Straub CS. Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci. 2017;20:1–6. https://doi.org/10.1016/j.cois.2017.01.001Outlines how incorporating a trait-based approach can increase our mechanistic understanding of predator-prey interactions.
Article
Google Scholar
Riihimäki J, Kaitaniemi P, Koricheva J, Vehviläinen H. Testing the enemies hypothesis in forest stands: the important role of tree species composition. Oecologia. 2005;142:90–7. https://doi.org/10.1007/s00442-004-1696-y.
Article
Google Scholar
Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, et al. Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep. 2017;3:223–43. https://doi.org/10.1007/s40725-017-0064-1.
Article
Google Scholar
Klapwijk MJ, Björkman C. Mixed forests to mitigate risk of insect outbreaks. Scan J For Res. 2018;33:772–80. https://doi.org/10.1080/02827581.2018.1502805.
Article
Google Scholar
Langellotto GA, Denno RF. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia. 2004;139:1–10. https://doi.org/10.1007/s00442-004-1497-3.
Article
Google Scholar
Ampoorter E, Barbaro L, Jactel H, Baeten L, Boberg J, Carnol M, et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos. 2020;129:133–46. https://doi.org/10.1111/oik.06290.
Article
Google Scholar
• Staab M, Bruelheide H, Durka W, Michalski S, Purschke O, Zhu CD, et al. Tree phylogenetic diversity promotes host-parasitoid interactions. Proc R Soc B. 2016;283:20160275. https://doi.org/10.1098/rspb.2016.0275Extends the ‘enemies’ hypothesis to tree phylogenetic diversity by showing that tree phylogenetic diversity is superior to tree species richness in increasing parasitism rates.
Article
Google Scholar
Jactel H, Brockerhoff EG. Tree diversity reduces herbivory by forest insects. Ecol Lett. 2007;10:835–48. https://doi.org/10.1111/j.1461-0248.2007.01073.x.
Article
Google Scholar
Ammer C. Diversity and forest productivity in a changing climate. New Phytol. 2019;221:50–66. https://doi.org/10.1111/nph.15263.
Article
Google Scholar
• Schuldt A, Ebeling A, Kunz M, Staab M, Guimaraes-Steinicke C, Bachmann D, et al. Multiple plant diversity components drive consumer communities across ecosystems. Nat Commun. 2019;10:1460. https://doi.org/10.1038/s41467-019-09448-8Emphasizes the importance of considering the multifaceted concept of tree diversity when testing the ‘enemies’ hypothesis.
CAS
Article
Google Scholar
Schowalter TD, Noriega JA, Tscharntke T. Insect effects on ecosystem services—introduction. Basic Appl Ecol. 2018;26:1–7. https://doi.org/10.1016/j.baae.2017.09.011.
Article
Google Scholar
Schuldt A, Assmann T, Brezzi M, Buscot F, Eichenberg D, Gutknecht J, et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat Commun. 2018;9:2989. https://doi.org/10.1038/s41467-018-05421-z.
CAS
Article
Google Scholar
Root RB. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr. 1973;43:95–120. https://doi.org/10.2307/1942161.
Article
Google Scholar
Russell EP. Enemies hypothesis – a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ Entomol. 1989;18:590–9. https://doi.org/10.1093/ee/18.4.590.
Article
Google Scholar
Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B. 2006;273:1715–27. https://doi.org/10.1098/rspb.2006.3530.
CAS
Article
Google Scholar
Wan NF, Zheng XR, Fu LW, Kiær LP, Zhang Z, Chaplin-Kramer R, et al. Global synthesis of effects of plant species diversity on trophic groups and interactions. Nat Plants. 2020;6:503–10. https://doi.org/10.1038/s41477-020-0654-y.
Article
Google Scholar
Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst. 2009;40:573–92. https://doi.org/10.1146/annurev.ecolsys.110308.120320.
Article
Google Scholar
Finke DL, Denno RF. Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology. 2002;83:643–52. https://doi.org/10.2307/3071870.
Article
Google Scholar
Straub CS, Simasek NP, Dohm R, Gapinski MR, Aikens EO, Nagy C. Plant diversity increases herbivore movement and vulnerability to predation. Basic Appl Ecol. 2014;15:50–8. https://doi.org/10.1016/j.baae.2013.12.004.
Article
Google Scholar
Haddad NM, Crutsinger GM, Gross K, Haarstad J, Knops JMH, Tilman D. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol Lett. 2009;12:1029–39. https://doi.org/10.1111/j.1461-0248.2009.01356.x.
Article
Google Scholar
Breshears DD. The grassland–forest continuum: trends in ecosystem properties for woody plant mosaics? Front Ecol Environ. 2006;4:96–104. https://doi.org/10.1890/1540-9295(2006)004[0096:TGCTIE]2.0.CO;2.
Article
Google Scholar
Grossman JJ, Vanhellemont M, Barsoum N, Bauhus J, Bruelheide H, Castagneyrol B, et al. Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environ Exp Bot. 2018;152:68–89. https://doi.org/10.1016/j.envexpbot.2017.12.015.
Article
Google Scholar
van Beal SA, Philpott SM, Greenberg R, Bichier P, Barber NA, Mooney KA, et al. Birds as predators in tropical agroforestry systems. Ecology. 2008;89:928–34. https://doi.org/10.1890/06-1976.1.
Article
Google Scholar
Mooney KA, Gruner DS, Barber NA, van Beal SA, Philpott SM, Greenberg R. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proc Natl Acad Sci U S A. 2010;107:7335–40. https://doi.org/10.1073/pnas.1001934107.
Article
Google Scholar
Zhang YJ, Adams J. Top-down control of herbivores varies with ecosystem types. J Ecol. 2011;99:370–2. https://doi.org/10.1111/j.1365-2745.2010.01770.x.
Article
Google Scholar
Vehviläinen H, Koricheva J, Ruohomäki K. Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos. 2008;117:935–43. https://doi.org/10.1111/j.2008.0030-1299.15972.x.
Article
Google Scholar
Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia. 2009;160:279–88. https://doi.org/10.1007/s00442-009-1304-2.
Article
Google Scholar
Staab M, Schuldt A, Assmann T, Klein AM. Tree diversity promotes predator but not omnivore ants in a subtropical Chinese forest. Ecol Entomol. 2014;39:637–47. https://doi.org/10.1111/een.12143.
Article
Google Scholar
Schuldt A, Both S, Bruelheide H, Härdtle W, Schmid B, Zhou H, et al. Predator diversity and abundance provide little support for the enemies hypothesis in forests of high tree diversity. PLoS One. 2011;6:e22905. https://doi.org/10.1371/journal.pone.0022905.
CAS
Article
Google Scholar
Schuldt A, Scherer-Lorenzen M. Non-native tree species (Pseudotsuga menziesii) strongly decreases predator biomass and abundance in mixed-species plantations of a tree diversity experiment. For Ecol Manag. 2014;327:10–7. https://doi.org/10.1016/j.foreco.2014.04.036.
Article
Google Scholar
Finke DL, Denno RF. Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett. 2005;8:1299–306. https://doi.org/10.1111/j.1461-0248.2005.00832.x.
Article
Google Scholar
Schuldt A, Staab M. Tree species richness strengthens relationships between ants and the functional composition of spider assemblages in a highly diverse forest. Biotropica. 2015;47:339–46. https://doi.org/10.1111/btp.12209.
Article
Google Scholar
•• Singer MS, Clark RE, Lichter-Marck IH, Johnson ER, Mooney KA. Predatory birds and ants partition caterpillar prey by body size and diet breadth. J Anim Ecol. 2017;86:1363–71. https://doi.org/10.1111/1365-2656.12727Shows how interactions among different groups of predators affect herbivores in relation to herbivore traits.
Article
Google Scholar
Fuller L, Fuentes-Montemayor E, Watts K, Macgregor NA, Bintenc K, Park KJ. Local-scale attributes determine the suitability of woodland creation sites for Diptera. J Appl Ecol. 2018;55:1173–84. https://doi.org/10.1111/1365-2664.13035.
Article
Google Scholar
Oxbrough A, French V, Irwin S, Kelly TC, Smiddy P, O'Halloran J. Can mixed species stands enhance arthropod diversity in plantation forests? For Ecol Manag. 2012;270:11–8. https://doi.org/10.1016/j.foreco.2012.01.006.
Article
Google Scholar
Oxbrough A, García-Tejero S, Spence J, O’Halloran J. Can mixed stands of native and non-native tree species enhance diversity of epigaeic arthropods in plantation forests? For Ecol Manag. 2016;367:21–9. https://doi.org/10.1016/j.foreco.2016.02.023.
Article
Google Scholar
Esquivel-Gómez L, Abdala-Roberts L, Pinkus-Rendon M, Parra-Tabla V. Effects of tree species diversity on a community of weaver spiders in a tropical forest plantation. Biotropica. 2017;49:63–70. https://doi.org/10.1111/btp.12352.
Article
Google Scholar
Abdala-Roberts L, Mooney KA, Quijano-Medina T, Campos-Navarrete MJ, Gonzalez-Moreno A, Parra-Tabla V. Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos. 2015;124:1527–35. https://doi.org/10.1111/oik.02033.
Article
Google Scholar
Nadrowski K, Wirth C, Scherer-Lorenzen M. Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain. 2010;2:75–9. https://doi.org/10.1016/j.cosust.2010.02.003.
Article
Google Scholar
Zhang JY, Bruelheide H, Chen XF, Eichenberg D, Kröber W, Xu WX, et al. Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia. 2017;183:455–67. https://doi.org/10.1007/s00442-016-3769-0.
Article
Google Scholar
Schuldt A, Bruelheide H, Durka W, Michalski SG, Purschke O, Assmann T. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages. Oecologia. 2014;174:533–43. https://doi.org/10.1007/s00442-013-2790-9.
Article
Google Scholar
Schuldt A, Baruffol M, Bruelheide H, Chen SM, Chi XL, Wall M, et al. Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests. Oecologia. 2014;176:171–82. https://doi.org/10.1007/s00442-014-3006-7.
Article
Google Scholar
Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. Phylogenetic diversity and the functioning of ecosystems. Ecol Lett. 2012;15:637–48. https://doi.org/10.1111/j.1461-0248.2012.01795.x.
Article
Google Scholar
Tucker CM, Davies TJ, Cadotte MW, Pearse WD. On the relationship between phylogenetic diversity and trait diversity. Ecology. 2018;99:1473–9. https://doi.org/10.1002/ecy.2349.
Article
Google Scholar
Davidson DW, Cook SC, Snelling RR, Chua TH. Explaining the abundance of ants in lowland tropical rainforest canopies. Science. 2003;300:969–72. https://doi.org/10.1126/science.1082074.
CAS
Article
Google Scholar
Heil M. Extrafloral nectar at the plant-insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annu Rev Entomol. 2015;60:213–32. https://doi.org/10.1146/annurev-ento-010814-020753.
CAS
Article
Google Scholar
Staab M, Blüthgen N, Klein AM. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos. 2015;124:827–34. https://doi.org/10.1111/oik.01723.
Article
Google Scholar
Staab M, Fornoff F, Klein AM, Blüthgen N. Ants at plant wounds: a little-known trophic interaction with evolutionary implications for ant-plant interactions. Am Nat. 2017;190:442–50. https://doi.org/10.1086/692735.
Article
Google Scholar
Campos-Navarrete MJ, Abdala-Roberts L, Munguia-Rosas MA, Parra-Tabla V. Are tree species diversity and genotypic diversity effects on insect herbivores mediated by ants? PLoS One. 2015;10:e0132671. https://doi.org/10.1371/journal.pone.0132671.
CAS
Article
Google Scholar
Fornoff F, Klein AM, Blüthgen N, Staab M. Tree diversity increases robustness of multi-trophic interactions. Proc R Soc B. 2019;286:20182399. https://doi.org/10.1098/rspb.2018.2399.
Article
Google Scholar
Zvereva EL, Lanta V, Kozlov MV. Effects of sap-feeding insect herbivores on growth and reproduction of woody plants: a meta-analysis of experimental studies. Oecologia. 2010;163:949–60. https://doi.org/10.1007/s00442-010-1633-1.
Article
Google Scholar
Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-Cabal MA, McKeon CS, et al. Benefits for plants in ant-plant protective mutualisms: a meta-analysis. PLoS One. 2010;5:e14308. https://doi.org/10.1371/journal.pone.0014308.
CAS
Article
Google Scholar
Katayama M, Kishimoto-Yamada K, Tanaka HO, Endo T, Hashimoto Y, Yamane S, et al. Negative correlation between ant and spider abundances in the canopy of a Bornean tropical rain forest. Biotropica. 2015;47:363–8. https://doi.org/10.1111/btp.12208.
Article
Google Scholar
•• Skarbek CJ, Noack M, Bruelheide H, Härdtle W, von Oheimb G, Scholten T, et al. A tale of scale: community but not neighborhood tree diversity increases leaf litter ant diversity. J Anim Ecol. 2020;89:299–308. https://doi.org/10.1002/ece3.6003Demonstrates that ‘enemies’ hypothesis effects are scale-dependent and not restricted to the immediate neighborhood of sampling points.
Article
Google Scholar
Grevé ME, Hager J, Weisser WW, Schall P, Gossner MM, Feldhaar H. Effect of forest management on temperate ant communities. Ecosphere. 2018;9:e02303. https://doi.org/10.1002/ecs2.2303.
Article
Google Scholar
Yeeles P, Lach L, Hobbs RJ, van Wees M, Didham RK. Woody plant richness does not influence invertebrate community reassembly trajectories in a tree diversity experiment. Ecology. 2017;98:500–11. https://doi.org/10.1002/ecy.1662.
Article
Google Scholar
Leles B, Xiao X, Pasion BO, Nakamura A, Tomlinson KW. Does plant diversity increase top-down control of herbivorous insects in tropical forest? Oikos. 2017;126:1142–9. https://doi.org/10.1111/oik.03562.
Article
Google Scholar
Moreira X, Mooney KA, Zas R, Sampedro L. Bottom-up effects of host-plant species diversity and top-down effects of ants interactively increase plant performance. Proc R Soc B. 2012;279:4464–72. https://doi.org/10.1098/rspb.2012.0893.
Article
Google Scholar
Nolte D, Schuldt A, Gossner M, Ulrich W, Assmann T. Functional traits drive ground beetle community structures in Central European forests: implications for conservation. Biol Conserv. 2017;213:5–12. https://doi.org/10.1016/j.biocon.2017.06.038.
Article
Google Scholar
Lange M, Türke M, Pasalic E, Boch S, Hessenmöller D, Müller J, et al. Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. For Ecol Manag. 2014;329:166–76. https://doi.org/10.1016/j.foreco.2014.06.012.
Article
Google Scholar
Zou Y, Sang WG, Bai F, Brennan E, Diekman M, Lius YH, et al. Large-scale α-diversity patterns in plants and ground beetles (Coleoptera: Carabidae) indicate a high biodiversity conservation value of China's restored temperate forest landscapes. Divers Distrib. 2019;25:1613–24. https://doi.org/10.1111/ddi.12964.
Article
Google Scholar
Barsoum N, Fuller L, Ashwood F, Reed K, Bonnet-Lebrun AS, Leung F. Ground-dwelling spider (Araneae) and carabid beetle (Coleoptera: Carabidae) community assemblages in mixed and monoculture stands of oak (Quercus robur L./Quercus petraea (Matt.) Liebl.) and Scots pine (Pinus sylvestris L.). For Ecol Manag. 2014;321:29–41. https://doi.org/10.1016/j.foreco.2013.08.063.
Article
Google Scholar
Jouveau S, Toigo M, Giffard B, Castagneyrol B, van Halder I, Vetillard F, et al. Carabid activity-density increases with forest vegetation diversity at different spatial scales. Insect Conserv Divers. 2020;13:36–46. https://doi.org/10.1111/icad.12372.
Article
Google Scholar
Chamagne J, Paine CET, Schoolmaster DR, Stejskal R, Volarik D, Sebesta J, et al. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa. Ecology. 2016;97:2364–73. https://doi.org/10.1002/ecy.1479.
Article
Google Scholar
Sobek S, Steffan-Dewenter I, Scherber C, Tscharntke T. Spatiotemporal changes of beetle communities across a tree diversity gradient. Divers Distrib. 2009;15:660–70. https://doi.org/10.1111/j.1472-4642.2009.00570.x.
Article
Google Scholar
Normann C, Tscharntke T, Scherber C. Interacting effects of forest stratum, edge and tree diversity on beetles. For Ecol Manag. 2016;361:421–31. https://doi.org/10.1016/j.foreco.2015.11.002.
Article
Google Scholar
Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol Evol. 2017;32:438–51. https://doi.org/10.1016/j.tree.2017.02.020.
Article
Google Scholar
Fraser SEM, Dytham C, Mayhew PJ. Determinants of parasitoid abundance and diversity in woodland habitats. J Appl Ecol. 2007;44:352–61. https://doi.org/10.1111/j.1365-2664.2006.01266.x.
Article
Google Scholar
Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A. Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology. 2012;93:2407–20. https://doi.org/10.1890/11-2043.1.
Article
Google Scholar
Kendall LK, Ward DF. Habitat determinants of the taxonomic and functional diversity of parasitoid wasps. Biodivers Conserv. 2016;25:1955–72. https://doi.org/10.1007/s10531-016-1174-y.
Article
Google Scholar
• Rodríguez A, Pohjoismäki JLO, Kouki J. Diversity of forest management promotes parasitoid functional diversity in boreal forests. Biol Conserv. 2019;238:108205. https://doi.org/10.1016/j.biocon.2019.108205Emphasizes the importance of parasitoids in ‘enemies’ hypothesis studies and shows how parasitoid functional diversity can benefit from suitable management.
Article
Google Scholar
Abdala-Roberts L, Gonzalez-Moreno A, Mooney KA, Moreira X, Gonzalez-Hernandez A, Parra-Tabla V. Effects of tree species diversity and genotypic diversity on leafminers and parasitoids in a tropical forest plantation. Agric For Entomol. 2016;18:43–51. https://doi.org/10.1111/afe.12132.
Article
Google Scholar
Legault S, James PMA. Parasitism rates of spruce budworm larvae: testing the enemy hypothesis along a gradient of forest diversity measured at different spatial scales. Environ Entomol. 2018;47:1083–95. https://doi.org/10.1093/ee/nvy113.
Article
Google Scholar
Bellone D, Björkman C, Klapwijk MJ. Top-down pressure by generalist and specialist natural enemies in relation to habitat heterogeneity and resource availability. Basic Appl Ecol. 2020;43:16–26. https://doi.org/10.1016/j.baae.2019.10.005.
Article
Google Scholar
Sam K, Remmel T, Molleman F. Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: an experiment using clay and dough dummies with green colourants on various plant species. Entomol Exp Appl. 2015;157:317–24. https://doi.org/10.1111/eea.12367.
Article
Google Scholar
Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, et al. Higher predation risk for insect prey at low latitudes and elevations. Science. 2017;356:742–4. https://doi.org/10.1126/science.aaj1631.
CAS
Article
Google Scholar
•• Penone C, Allan E, Soliveres S, Felipe-Lucia MR, Gossner MM, Seibold S, et al. Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecol Lett. 2019;22:170–80. https://doi.org/10.1111/ele.13182A very comprehensive study showing that many properties of a forest influence natural enemy abundance and species richness.
Article
Google Scholar
Muiruri EW, Rainio K, Koricheva J. Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae. Oecologia. 2016;180:619–30. https://doi.org/10.1007/s00442-015-3391-6.
Article
Google Scholar
Dekeukeleire D, Lantman IMV, Hertzog LR, Vandegehuchte ML, Strubbe D, Vantieghem P, et al. Avian top-down control affects invertebrate herbivory and sapling growth more strongly than overstorey species composition in temperate forest fragments. For Ecol Manag. 2019;442:1–9. https://doi.org/10.1016/j.foreco.2019.03.055.
Article
Google Scholar
Yang B, Li B, He YX, Zhang LP, Bruelheide H, Schuldt A. Tree diversity has contrasting effects on predation rates by birds and arthropods on three broadleaved, subtropical tree species. Ecol Res. 2018;33:205–12. https://doi.org/10.1007/s11284-017-1531-7.
CAS
Article
Google Scholar
Nell CS, Abdala-Roberts L, Parra-Tabla V, Mooney KA. Tropical tree diversity mediates foraging and predatory effects of insectivorous birds. Proc R Soc B. 2018;285:20181842. https://doi.org/10.1098/rspb.2018.1842.
Article
Google Scholar
Singer MS, Lichter-Marck IH, Farkas TE, Aaron E, Whitney KD, Mooney KA. Herbivore diet breadth mediates the cascading effects of carnivores in food webs. Proc Natl Acad Sci U S A. 2014;111:9521–6. https://doi.org/10.1073/pnas.1401949111.
CAS
Article
Google Scholar
Setiawan NN, Vanhellemont M, Baeten L, Gobin R, De Smedt P, Proesmans W, et al. Does neighbourhood tree diversity affect the crown arthropod community in saplings? Biodivers Conserv. 2016;25:169–85. https://doi.org/10.1007/s10531-015-1044-z.
Article
Google Scholar
Schmidt MH, Lauer A, Purtauf T, Thies C, Schaefer M, Tscharntke T. Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc B. 2003;270:1905–9. https://doi.org/10.1098/rspb.2003.2469.
Article
Google Scholar
Becerra JX. On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc Natl Acad Sci U S A. 2015;112:6098–103. https://doi.org/10.1073/pnas.1418643112.
CAS
Article
Google Scholar
Björkman C, Berggren A, Bylund H. Causes behind insect folivory patterns in latitudinal gradients. J Ecol. 2011;99:367–9. https://doi.org/10.1111/j.1365-2745.2010.01707.x.
Article
Google Scholar
Schmitz OJ. Effects of predator functional diversity on grassland ecosystem function. Ecology. 2009;90:2339–45. https://doi.org/10.1890/08-1919.1.
Article
Google Scholar
Russell M. A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species. Biol Control. 2015;82:96–103. https://doi.org/10.1016/j.biocontrol.2014.11.014.
Article
Google Scholar
Stephan JG, Albertsson J, Wang L, Porcel M. Weeds within willow short-rotation coppices alter the arthropod community and improve biological control of the blue willow beetle. BioControl. 2016;61:103–14. https://doi.org/10.1007/s10526-015-9693-0.
Article
Google Scholar
Stiling P. Density-dependent processes and key factors in insect populations. J Anim Ecol. 1988;57:581–93. https://doi.org/10.2307/4926.
Article
Google Scholar
Tylianakis JM, Romo CM. Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol. 2010;11:657–68. https://doi.org/10.1016/j.baae.2010.08.005.
Article
Google Scholar
Salazar D, Marquis RJ. Herbivore pressure increases toward the equator. Proc Natl Acad Sci U S A. 2012;109:12616–20. https://doi.org/10.1073/pnas.1202907109.
Article
Google Scholar
Adams JM, Zhang Y. Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J Ecol. 2009;97:933–40. https://doi.org/10.1111/j.1365-2745.2009.01523.x.
Article
Google Scholar
Garibaldi LA, Kitzberger T, Ruggiero A. Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Glob Ecol Biogeogr. 2011;20:609–19. https://doi.org/10.1111/j.1466-8238.2010.00623.x.
Article
Google Scholar
Campos-Navarrete MJ, Munguia-Rosas MA, Abdala-Roberts L, Quinto J, Parra-Tabla V. Effects of tree genotypic diversity and species diversity on the arthropod community associated with big-leaf mahogany. Biotropica. 2015;47:579–87. https://doi.org/10.1111/btp.12250.
Article
Google Scholar
Müller M, Klein AM, Scherer-Lorenzen M, Nock CA, Staab M. Tree genetic diversity increases arthropod diversity in willow short rotation coppice. Biomass Bioenergy. 2018;108:338–44. https://doi.org/10.1016/j.biombioe.2017.12.001.
Article
Google Scholar
Roeder KA, Kaspari M. From cryptic herbivore to predator: stable isotopes reveal consistent variability in trophic levels in an ant population. Ecology. 2017;98:297–303. https://doi.org/10.1002/ecy.1641.
Article
Google Scholar
Clark RE, Farkas TE, Lichter-Marck I, Johnson ER, Singer MS. Multiple interaction types determine the impact of ant predation of caterpillars in a forest community. Ecology. 2016;97:3379–88. https://doi.org/10.1002/ecy.1571.
Article
Google Scholar
Schuldt A, Fornoff F, Bruelheide H, Klein AM, Staab M. Tree species richness attenuates the positive relationship between mutualistic ant-hemipteran interactions and leaf chewer herbivory. Proc R Soc B. 2017;284:20171489. https://doi.org/10.1098/rspb.2017.1489.
Article
Google Scholar
Jones CG, Lawton JH, Shachak M. Organisms as ecosystem engineers. Oikos. 1994;69:373–86. https://doi.org/10.2307/3545850.
Article
Google Scholar
Koptur S. Extrafloral nectary-mediated interactions between insects and plants. In: Bernays E, editor. CRC series on insect/plant interactions. Boca Raton: CRC Press; 1992.
Google Scholar
Staab M, Methorst J, Peters J, Blüthgen N, Klein AM. Tree diversity and nectar composition affect arthropod visitors on extrafloral nectaries in a diversity experiment. J Plant Ecol. 2017;10:201–12. https://doi.org/10.1093/jpe/rtw017.
Article
Google Scholar
Muehleisen A, Queenborough SA, Alvia P, Valencia R, Fiala B. Incidence of extrafloral nectaries and their relationship with growth and survival of lowland tropical rain forest trees. Biotropica. 2016;48:321–31. https://doi.org/10.1111/btp.12310.
Article
Google Scholar
Rezende MQ, Venzon M, Perez AL, Cardoso IM, Janssen A. Extrafloral nectaries of associated trees can enhance natural pest control. Agric Ecosyst Environ. 2014;188:198–203. https://doi.org/10.1016/j.agee.2014.02.024.
Article
Google Scholar
Kröber W, Li Y, Härdtle W, Ma K, Schmid B, Schmidt K, et al. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecol Evol. 2015;5:3541–56. https://doi.org/10.1002/ece3.1604.
Article
Google Scholar
Lundgren JG, Seagraves MP. Physiological benefits of nectar feeding by a predatory beetle. Biol J Linn Soc. 2011;104:661–9. https://doi.org/10.1111/j.1095-8312.2011.01729.x.
Article
Google Scholar
Sanders D. Herbivory in spiders. In: Nentwig W, editor. Spider Ecophysiology. Berlin, Heidelberg: Springer; 2013.
Google Scholar
Jäkel A, Roth M. Conversion of single-layered scots pine monocultures into close-to-nature mixed hardwood forests: effects on parasitoid wasps as pest antagonists. Eur J For Res. 2004;123:203–12. https://doi.org/10.1007/s10342-004-0030-x.
Article
Google Scholar
Bellone D, Klapwijk MJ, Björkman C. Habitat heterogeneity affects predation of European pine sawfly cocoons. Ecol Evol. 2017;7:11011–20. https://doi.org/10.1002/ece3.3632.
Article
Google Scholar
Kaitaniemi P, Riihimäki J, Koricheva J, Vehviläinen H. Experimental evidence for associational resistance against the European pine sawfly in mixed tree stands. Silva Fenn. 2007;41:259–68. https://doi.org/10.14214/sf.295.
Article
Google Scholar
Nell CS, Mooney KA. Plant structural complexity mediates trade-off in direct and indirect plant defense by birds. Ecology. 2019;100:e02853. https://doi.org/10.1002/ecy.2853.
Article
Google Scholar
Ellwood MDF, Foster WA. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature. 2004;429:549–51. https://doi.org/10.1038/nature02560.
CAS
Article
Google Scholar
Sanders D, Schaefer M, Platner C, Griffiths GJK. Intraguild interactions among generalist predator functional groups drive impact on herbivore and decomposer prey. Oikos. 2011;120:418–26. https://doi.org/10.1111/j.1600-0706.2010.18924.x.
Article
Google Scholar
Michalko R, Pekár S, Entling MH. An updated perspective on spiders as generalist predators in biological control. Oecologia. 2019;189:21–36. https://doi.org/10.1007/s00442-018-4313-1.
Article
Google Scholar
• Lövei GL, Ferrante M. A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci. 2017;24:528–42. https://doi.org/10.1111/1744-7917.12405Summarizes research using artificial prey and gives important suggestions on how to quantify predation rates.
Article
Google Scholar
Greenop A, Woodcock BA, Wilby A, Cook SM, Pywell RF. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology. 2018;99:1771–82. https://doi.org/10.1002/ecy.2378.
Article
Google Scholar
Liu X, Wang Z, Huang C, Li M, Bibi F, Zhou S, et al. Ant assemblage composition explains high predation pressure on artificial caterpillars during early night. Ecol Entomol. 2020;45:547–54. https://doi.org/10.1111/een.12826.
Article
Google Scholar
Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: a meta-analysis. Funct Ecol. 2018;32:1704–17. https://doi.org/10.1111/1365-2435.13062.
Article
Google Scholar
Cao HX, Klein AM, Zhu CD, Staab M, Durka W, Fischer M, et al. Intra- and interspecific tree diversity promotes multitrophic plant-Hemiptera-ant interactions in a forest diversity experiment. Basic Appl Ecol. 2018;29:89–97. https://doi.org/10.1016/j.baae.2018.03.005.
Article
Google Scholar
Moreira X, Abdala-Roberts L, Rasmann S, Castagneyrol B, Mooney KA. Plant diversity effects on insect herbivores and their natural enemies: current thinking, recent findings, and future directions. Curr Opin Insect Sci. 2016;14:1–7. https://doi.org/10.1016/j.cois.2015.10.003.
Article
Google Scholar
Srivastava DS, Lawton JH. Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat. 1998;152:510–29. https://doi.org/10.1086/286187.
CAS
Article
Google Scholar
Liu C, Guenard B, Blanchard B, Peng Y-Q, Economo EP. Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecol Monogr. 2016;86:215–27. https://doi.org/10.1890/15-1464.1.
Article
Google Scholar
Floren A, Biun A, Linsenmair KE. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia. 2002;131:137–44. https://doi.org/10.1007/s00442-002-0874-z.
Article
Google Scholar
Gamfeldt L, Snall T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun. 2013;4:1340. https://doi.org/10.1038/ncomms2328.
CAS
Article
Google Scholar
van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, et al. ‘Jack-of-all-trades’ effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nat Commun. 2016;7:11109. https://doi.org/10.1038/ncomms11109.
CAS
Article
Google Scholar
Guo QF, Fei SL, Potter KM, Liebhold AM, Wen J. Tree diversity regulates forest pest invasion. Proc Natl Acad Sci U S A. 2019;116:7382–6. https://doi.org/10.1073/pnas.1821039116.
CAS
Article
Google Scholar
Baeten L, Bruelheide H, van der Plas F, Kambach S, Ratcliffe S, Jucker T, et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J Appl Ecol. 2019;56:733–44. https://doi.org/10.1111/1365-2664.13308.
Article
Google Scholar
Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, et al. Redefining ecosystem multifunctionality. Nat Ecol Evol. 2018;2:427–36. https://doi.org/10.1038/s41559-017-0461-7.
Article
Google Scholar
Koricheva J, Vehviläinen H, Riihimäki J, Ruohomäki K, Kaitaniemi P, Ranta H. Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Can J For Res. 2006;36:324–36. https://doi.org/10.1139/x05-172.
Article
Google Scholar
Ruohomäki K, Tanhuanpää M, Ayres MP, Kaitaniemi P, Tammaru T, Haukioja E. Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. Popul Ecol. 2000;42:211–23. https://doi.org/10.1007/PL00012000.
Article
Google Scholar
Dwyer G, Dushoff J, Yee SH. The combined effects of pathogens and predators on insect outbreaks. Nature. 2004;430:341–5. https://doi.org/10.1038/nature02569.
CAS
Article
Google Scholar
Pureswaran DS, Johns R, Heard SB, Quiring D. Paradigms in eastern spruce budworm (Lepidoptera: Tortricidae) population ecology: a century of debate. Environ Entomol. 2016;46:1333–42. https://doi.org/10.1093/ee/nvw103.
Article
Google Scholar
Messier C, Puettmann KJ, Coates KD. Managing forests as complex adaptive systems: Abingdon-on-Thames: Routledge; 2013.
Seibold S, Bässler C, Baldrian P, Reinhard L, Thorn S, Ulyshen MD, et al. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv. 2016;204:181–8. https://doi.org/10.1016/j.biocon.2016.09.031.
Article
Google Scholar
Katano I, Doi H, Eriksson BK, Hillebrand H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos. 2015;124:1427–35. https://doi.org/10.1111/oik.02430.
Article
Google Scholar
Howe A, Lovei GL, Nachman G. Dummy caterpillars as a simple method to assess predation rates on invertebrates in a tropical agroecosystem. Entomol Exp Appl. 2009;131:325–9. https://doi.org/10.1111/j.1570-7458.2009.00860.x.
Article
Google Scholar
Rößler DC, Pröhl H, Lötters S. The future of clay model studies. BMC Zool. 2018;3:6. https://doi.org/10.1186/s40850-018-0033-6.
Article
Google Scholar
Brousseau P-M, Gravel D, Handa IT. Traits of litter-dwelling forest arthropod predators and detritivores covary spatially with traits of their resources. Ecology. 2019;100:e02815. https://doi.org/10.1002/ecy.2815.
Article
Google Scholar
Bleicher SS. The landscape of fear conceptual framework: definition and review of current applications and misuses. PeerJ. 2017;5:e3772. https://doi.org/10.7717/peerj.3772.
Article
Google Scholar
Bucher R, Menzel F, Entling MH. Risk of spider predation alters food web structure and reduces local herbivory in the field. Oecologia. 2015;178:571–7. https://doi.org/10.1007/s00442-015-3226-5.
Article
Google Scholar
Offenberg J, Damgaard C. Ants suppressing plant pathogens: a review. Oikos. 2019;128:1691–703. https://doi.org/10.1111/oik.06744.
Article
Google Scholar
Stork NE, Grimbacher PS. Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proc R Soc B. 2006;273:1969–75. https://doi.org/10.1098/rspb.2006.3521.
Article
Google Scholar
Floren A, Wetzel W, Staab M. The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecol News. 2014;19:65–74.
Google Scholar
Schuldt A, Bruelheide H, Buscot F, Assmann T, Erfmeier A, Klein AM, et al. Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Sci Rep. 2017;7:4222. https://doi.org/10.1038/s41598-017-04619-3.
CAS
Article
Google Scholar
Poeydebat C, Tixier P, Chabrier C, de Bellaire LL, Vargas R, Daribo M-O, et al. Does plant richness alter multitrophic soil food web and promote plant-parasitic nematode regulation in banana agroecosystems? Appl Soil Ecol. 2017;117:137–46. https://doi.org/10.1016/j.apsoil.2017.04.017.
Article
Google Scholar
Klapwijk MJ. The effect of multiple natural enemies on a shared herbivore prey. Ecol Evol. 2019;9:9052–60. https://doi.org/10.1002/ece3.5451.
Article
Google Scholar
Nixon AE, Roland J. Generalist predation on forest tent caterpillar varies with forest stand composition: an experimental study across multiple life stages. Ecol Entomol. 2012;37:13–23. https://doi.org/10.1111/j.1365-2311.2011.01330.x.
Article
Google Scholar
Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, et al. Ants are the major agents of resource removal from tropical rainforests. J Anim Ecol. 2018;87:293–300. https://doi.org/10.1111/1365-2656.12728.
Article
Google Scholar
Mottl O, Yombai J, Fayle TM, Novotny V, Klimes P. Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica. 2020;52:277–87. https://doi.org/10.1111/btp.12684.
Article
Google Scholar
Staab M, Pufal G, Tscharntke T, Klein AM. Trap nests for bees and wasps to analyse trophic interactions in changing environments – a systematic overview and user guide. Methods Ecol Evol. 2018;9:2226–39. https://doi.org/10.1111/2041-210x.13070.
Article
Google Scholar