Skip to main content
Log in

A novel method for water waves propagating in the presence of vortical mean flows over variable bathymetry

  • Research Article
  • Published:
Journal of Ocean Engineering and Marine Energy Aims and scope Submit manuscript

Abstract

A coupled-mode model is developed for the wave–current–seabed interaction problem with application to wave propagation and scattering by non-homogeneous currents of general vertical structure in variable bathymetry regions. The formulation is based on a velocity representation defined by a series of local vertical modes containing the propagating and evanescent modes, able to analytically treat the continuity condition and the bottom boundary condition on sloping parts of the seabed. Using the above representation in Euler equations, a coupled system of differential equations on the horizontal plane is derived with respect to the unknown horizontal velocity modal amplitudes. Under the assumption of small-amplitude waves, the system is linearized, and the dispersion characteristics of the model are studied for arbitrary vertical distribution of the mean flow indicating very fast convergence of the modal series over the whole frequency band of interest. Furthermore, interesting cases of wave–seabed–current interactions are studied and numerical results are compared against available experimental data indicating a very good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Athanassoulis GA, Belibassakis KA (1999) A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions. J Fluid Mech 389:275–301

    Article  Google Scholar 

  • Athanassoulis GA, Belibassakis KA (2007) New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Disc Cont Dyn Syst Supp. 2007:75–84

    MathSciNet  MATH  Google Scholar 

  • Beji S, Battjes JA (1994) Numerical simulation of nonlinear wave propagation over a bar. Coast Eng 23(1):1–16

    Article  Google Scholar 

  • Belibassakis KA, Athanassoulis GA (2011) A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions. Coast Eng 58(4):337–350

    Article  Google Scholar 

  • Belibassakis KA, Gerostathis TP, Athanassoulis GA (2011) A coupled-mode model for water wave scattering by horizontal, non-homogeneous current in general bottom topography. Appl Ocean Res 33:384–397

    Article  Google Scholar 

  • Belibassakis KA, Simon B, Touboul J, Rey V (2017) A coupled-mode model for water wave scattering by vertically sheared currents in variable bathymetry regions. Wave Mot 74:73–92

    Article  MathSciNet  Google Scholar 

  • Belibassakis K, Touboul J (2019) A nonlinear coupled-mode model for waves propagating in vertically sheared currents in variable bathymetry collinear waves and currents. Fluids 4(2):61. https://doi.org/10.3390/fluids4020061

    Article  Google Scholar 

  • Belibassakis K, Touboul J, Laffitte E, Rey V (2019) A mild-slope system for bragg scattering of water waves by sinusoidal bathymetry in the presence of vertically sheared currents. J Mar Sci Eng 7(1):9. https://doi.org/10.3390/jmse7010009

    Article  Google Scholar 

  • Berkhoff JCW (1976) Mathematical models for simple harmonic linear water waves. Wave diffraction and refraction. PhD thesis, De Voorst Laboratory of the Delft Hydraulics Laboratory

  • Booij N (1981) Gravity waves on water with non-uniform depth and current. PhD thesis, Delft University of Technology, The Netherlands

  • Boyles CA (1984) Acoustic waveguides: applications to oceanic science. New York

  • Brocchini M (2013) A reasoned overview on boussinesq-type models: the interplay between physics, mathematics and numerics. Proc Math Phys Eng Sci 469(2160):20130496

    Article  MathSciNet  Google Scholar 

  • Chamberlain PG, Porter D (1995) The modified mild-slope equation. J Fluid Mech 291:393–407

    Article  MathSciNet  Google Scholar 

  • Dalrymple RA (1974) A finite amplitude wave on linear shear current. J Geophys Res 79(30). https://doi.org/10.1029/JC079i030p04498

    Article  Google Scholar 

  • Dingemans MW (1997) Water wave propagation over uneven bottoms. Advanced series on ocean engineering. World Scientific, Singapore

    Book  Google Scholar 

  • Ellingsen SA (2016) Oblique waves on a vertically sheared current are rotational. Eur J Mech B Fluid 56:156–160

    Article  MathSciNet  Google Scholar 

  • Ellingsen SA, Li Y (2017) Approximate dispersion relations for waves on arbitrary shear flows. J Geophys Res Oceans 122(12):9889–9905

    Article  Google Scholar 

  • Fawcett JA (1992) A derivation of the differential equations of coupled-mode propagation. J Acoust Soc Am 92:290–295

    Article  Google Scholar 

  • Haas KA, Svendsen IA (2002) Laboratory measurements of the vertical structure of rip currents. J Geophys Res C5:3047

    Article  Google Scholar 

  • Kirby JT (1984) A note on linear surface wave–current interaction over slowly varying topography. J Geophys Res 89(C1):745–747

    Article  Google Scholar 

  • Kirby JT, Chen T (1989) Surface waves on vertically sheared flows : approximate dispersion relations. J Geophys Res 94(C1):1013–1027

    Article  Google Scholar 

  • Kirby James T (2016) Boussinesq models and their application to coastal processes across a wide range of scales. J Waterw Port Coast Ocean Eng 142(6):03116005

    Article  Google Scholar 

  • Laffitte E, Simon B, Rey V, Touboul J, Belibassakis K (2017) Wave-bottom-current interaction, effects of the wave vorticity on the bragg resonance. In: Soares G, Teixeira (eds) Proceedings of the 17th international maritime association of the mediterranean (IMAM), Lisbon, Portugal. Maritime transportation and harvesting of sea resources (2018) CRC Press Taylor & Francis, London, UK

  • Liu PLF (1983) Wave-current interactions on a slowly varying topography. J Geophys Res 88(C7):4421–4426

    Article  Google Scholar 

  • Massel SR (1993) Extended refraction-diffraction equation for surface waves. Coast Eng 19:97–126

    Article  Google Scholar 

  • Massel SR (1989) Hydrodynamics of coastal zones. Elsevier oceanography series. Elsevier Science, Amsterdam

    Google Scholar 

  • Nwogu OG (2009) Interaction of finite-amplitude waves with vertically sheared current fields. J Fluid Mech 627:179–213

    Article  MathSciNet  Google Scholar 

  • Peregrine DH (1976) Interactions of water waves and currents. Adv Appl Mech 16:9–117

    Article  Google Scholar 

  • Pierce AD (1965) Extension of the method of normal modes to sound propagation in an almost stratified medium. J Acoust Soc Am 37:19–27

    Article  Google Scholar 

  • Raoult C, Benoit M, Yates ML (2016) Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments. Coat Eng 114:194–207

    Article  Google Scholar 

  • Rey V, Touboul J, Guinot F (2012) Large scale experimental study of wave current interactions in presence of a 3d bathymetry. In: Rizzuto, Soares G (eds) Proceedings of the 14th international congress of international maritime association of the maritime (IMAM), Rome, Italy. Sustainable maritime transportation and exploitation of sea resources. 2012 CRC Press Taylor & Francis, London UK

  • Skop RA (1987) An approximate dispersion relation for wave–current interactions. J Waterw Port C-ASCE 113:187–195

    Article  Google Scholar 

  • Stewart RH, Joy JW (1974) Hf radio measurements of surface currents. Deep Sea Res 21:1039–1049

    Google Scholar 

  • Touboul J, Charland J, Rey V, Belibassakis K (2016) Extended mild-slope equation for surface waves interacting with a vertically sheared current. Coast Eng 116:77–88

    Article  Google Scholar 

Download references

Acknowledgements

The support of Kostas Belibassakis to visit Université de Toulon is greatly acknowledged. The invitation of Julien Touboul by the National Technical University of Athens, partially supported by the French DGA, is also deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Touboul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Expansion of the momentum equations on the eigenfunctions basis

Starting from Eq. (21), we now introduce the expansions (78). Proceeding term by term, we obtain

$$\begin{aligned}&\frac{\partial u}{\partial t} = \sum _{n=0}^{\infty } Z_n^{(1)} (z;h,\eta _0) \frac{\partial u_n(x,t)}{\partial t}, \frac{\partial }{\partial x} \left( \int _z^{\eta _0} \frac{\partial w}{\partial t} \mathrm{d}\xi \right) \\&\quad = -\sum _{n=0}^{\infty } \left\{ \frac{\partial }{\partial x} \left[ \frac{\partial }{\partial x} \left( Z_n^{(3)} \frac{\partial u_n}{\partial t} \right) - Z_n^{(2)}(\eta _0) \frac{\partial \eta _0}{\partial x} \frac{\partial u_n}{\partial t} \right] \right\} , \\&\frac{\partial }{\partial x}\left[ U_0(\eta _0)\cdot u(\eta _0) \right] = \sum _{n=0}^{\infty }\frac{\partial }{\partial x} \left( U_0(\eta _0)\cdot u_n \right) , \\&\frac{\partial }{\partial x}\left[ W_0(\eta _0)\cdot w(\eta _0) \right] = - \sum _{n=0}^{\infty }\frac{\partial }{\partial x}\left[ W_0 \frac{\partial }{\partial x} \left( Z_n^{(2)}(\eta _0) u_n \right) \right] , \end{aligned}$$

where \(Z_n^{(3)}\) is defined by

$$\begin{aligned} Z_n^{(3)}=\int _z^{\eta _0} Z_n^{(2)} (\xi ;h,\eta _0) \mathrm{d}\xi . \end{aligned}$$
(37)

The expressions of \(\mathcal {E}_1\), \(\mathcal {E}_2\), \(\mathcal {F}_1\) and \(\mathcal {F}_2\) involving the vorticity fields, we start by expressing these components on the basis. We obtain

$$\begin{aligned} \varvec{\omega }= & {} \left\{ \begin{aligned} \omega _1 \\ \omega _2 \\ \omega _3 \end{aligned} \right. = \left\{ \begin{aligned} 0\\&-(w_x-u_z) \\&0 \end{aligned} \right. \nonumber \\= & {} \left\{ \begin{aligned} 0\\&\sum _{n=0}^{+\infty } \left\{ \left( Z_n^{(0)} + Z_{n_{xx}}^{(2)} \right) u_n + 2 Z_{n_{x}}^{(2)} u_{n_x} + Z_n^{(2)}u_{n_{xx}} \right\} , \\&0 \end{aligned} \right. \nonumber \\ \end{aligned}$$
(38)

where \(Z_n^{(0)}\) is defined by \(Z_n^{(0)}=\partial Z_n^{(1)}/\partial z\). Thus

$$\begin{aligned} \mathcal {E}_1= & {} - \sum _{n=0}^{+\infty } \left\{ W_0 \left( Z_n^{(0)} + Z_{n_{xx}}^{(2)}\right) u_n + \left( 2 W_0 Z_{n_x}^{(2)}\right) u_{n_x}\right. \nonumber \\&\quad \left. + \left( W_0 Z_n^{(2)}\right) u_{n_{xx}} \right\} , \end{aligned}$$
(39)

A similar derivation can be performed for \(\mathcal {E}_2\), and we obtain

$$\begin{aligned} \mathcal {E}_2 = \sum _{n=0}^{+\infty } \left\{ \left( \Omega _{0_2} Z_{n_x}^{(2)} \right) u_n + \left( \Omega _{0_2} Z_{n}^{(2)} \right) u_{n_x} \right\} , \end{aligned}$$
(40)

where \((\Omega _{0_1}, \Omega _{0_2}, \Omega _{0_3})\) refer to the mean flow vorticity, and are provided by

$$\begin{aligned} \varvec{\Omega _0} = \left\{ \begin{aligned} \Omega _{0_1} \\ \Omega _{0_2} \\ \Omega _{0_3} \end{aligned} \right. = \left\{ \begin{aligned}&0 \\&-\left( W_{0_x} - U_{0_z} \right) . \\&0 \end{aligned} \right. \end{aligned}$$
(41)

The scalar functions \(\mathcal {F}_1\) and \(\mathcal {F}_2\) are also given by

$$\begin{aligned} \begin{aligned} \mathcal {F}_1&= \sum _{n=0}^{+\infty } \left\{ \left[ \int _z^{\eta } \left( U_0\left( Z_n^{(0)} + Z_{n_{xx}}^{(2)}\right) \right) \mathrm{d}\xi \right] u_n \right. \\&\quad + \left[ \int _z^{\eta } \left( 2 U_0 Z_{n_{x}}^{(2)} \right) \mathrm{d}\xi \right] u_{n_x} + \left. \left[ \int _z^{\eta } \left( U_0 Z_{n}^{(2)} \right) \mathrm{d}\xi \right] u_{n_{xx}} \right\} , \end{aligned} \end{aligned}$$
(42)

and

$$\begin{aligned} \mathcal {F}_2 = \sum _{n=0}^{+\infty } \left\{ \left[ \int _z^{\eta } \Omega _{0_2} Z_n^{(1)} \mathrm{d}\xi \right] u_n \right\} . \end{aligned}$$
(43)

Detailed expression of the coefficients

In the present work, this system is investigated in the framework of two-dimensional flows. Under this hypothesis, the system is much more readable, and reduces to

$$\begin{aligned}&\begin{aligned}&\sum _{n=0}^M \left\{ A1_{mn}^{\text{2D }} \frac{\partial u_n}{\partial t} \right. + B1_{mn}^{\text{2D }} \frac{\partial ^2 u_n}{\partial t \partial x} + C1_{mn}^{\text{2D }} \frac{\partial ^3 u_n}{\partial t \partial x^2} \\&\quad + D1_{mn}^{\text{2D }} u_n + E1_{mn}^{\text{2D }} \frac{\partial u_n}{\partial x} + F1_{mn}^{\text{2D }} \frac{\partial ^2 u_n}{\partial x^2} \\&\quad + \left. G1_{mn}^{\text{2D }} \frac{\partial ^3 u_n}{\partial x^3} \right\} + H1_{m}^{\text{2D }} \frac{\partial \tilde{\eta }}{\partial x} = 0, \qquad m=0,1, \ldots , M, \text{ and } \end{aligned} \end{aligned}$$
(44)
$$\begin{aligned}&\frac{\partial \tilde{\eta }}{\partial t} + A2^{\text{2D }} \frac{\partial \tilde{\eta } }{\partial x} + \sum _{n=0}^M \left\{ B2_n^{\text{2D }} u_n + C2_n^{\text{2D }} \frac{\partial u_n}{\partial x}\right\} =0. \end{aligned}$$
(45)

The coefficients are thus provided by

$$\begin{aligned} A1_{mn}^{\text{2D }}= & {} \left\langle \left( Z_n^{(1)} - Z_{n_{xx}}^{(3)} \right) ,Z_m^{(1)} \right\rangle + \left\langle 1,Z_m^{(1)} \right\rangle \frac{\partial }{\partial x} \left( Z_n^{(2)}(\eta _0)\frac{\partial \eta _0}{\partial x} \right) , \nonumber \\ B1_{mn}^{\text{2D }}= & {} - \left\langle 2 Z_{n_x}^{(3)}, Z_m^{(1)} \right\rangle + \left\langle 1,Z_m^{(1)} \right\rangle \left( Z_n^{(2)}(\eta _0)\frac{\partial \eta _0}{\partial x} \right) , \nonumber \\ C1_{mn}^{\text{2D }}= & {} - \left\langle Z_{n}^{(3)}, Z_m^{(1)} \right\rangle , \nonumber \\ D1_{mn}^{\text{2D }}= & {} \left\langle 1,Z_m^{(1)} \right\rangle \frac{\partial }{\partial x} \left( U_0(\eta _0) Z_n^{(1)} (\eta _0) -W_0(\eta _0) Z_{n_x}^{(2)}(\eta _0) \right) \nonumber \\&\qquad +\left\langle \left( W_0 \left( Z_n^{(0)} + Z_{n_{xx}}^{(2)}\right) \right) , Z_m^{(1)} \right\rangle - \left\langle \left( \Omega _{0_2} Z_{n_x}^{(2)} \right) , Z_m^{(1)} \right\rangle \nonumber \\&- \left\langle \frac{\partial }{\partial x}\left[ \int _z^\eta \left( U_{0} \left( Z_n^{(0)} + Z_{n_{xx}}^{(2)} \right) \right) \mathrm{d}\xi \right] , Z_m^{(1)} \right\rangle \nonumber \\&- \left\langle \frac{\partial }{\partial x} \left[ \int _z^\eta \Omega _{0_2} Z_n^{(1)} \mathrm{d}\xi \right] ,Z_m^{(1)} \right\rangle ,\nonumber \\ E1_{mn}^{\text{2D }}= & {} \left\langle 1,Z_m^{(1)} \right\rangle \left( U_0(\eta _0) Z_n^{(1)} (\eta _0) -W_0(\eta _0) Z_{n_x}^{(2)}(\eta _0) \right. \nonumber \\&\left. -\frac{\partial }{\partial x}\left( W_0(\eta _0) Z_{n}^{(2)}(\eta _0) \right) \right) \nonumber \\&+\left\langle \left( 2 W_0 Z_{n_x}^{(2)}\right) , Z_m^{(1)} \right\rangle - \left\langle \left( \Omega _{0_2} Z_{n}^{(2)}\right) , Z_m^{(1)} \right\rangle \nonumber \\&- \left\langle \left( \int _z^\eta \Omega _{0_2} Z_n^{(1)} \mathrm{d}\xi \right) ,Z_m^{(1)} \right\rangle \nonumber \\&- \left\langle \left( \int _z^\eta \left( U_0 \left( Z_n^{(0)} + Z_{n_{xx}}^{(2)} \right) \right) \mathrm{d}\xi \right. \right. \nonumber \\&\left. \left. + \frac{\partial }{\partial x}\left[ \int _z^\eta \left( 2 U_{0} Z_{n_x}^{(2)} \right) \mathrm{d}\xi \right] \right) , Z_m^{(1)} \right\rangle , \nonumber \\ F1_{mn}^{\text{2D }}= & {} - \left\langle 1,Z_m^{(1)} \right\rangle \left( W_0(\eta _0) Z_n^{(2)}(\eta _0) \right) +\left\langle \left( W_0 Z_{n}^{(2)} \right) , Z_m^{(1)} \right\rangle \nonumber \\&\quad - \left\langle \left( \int _z^\eta \left( 2 U_{0} Z_{n_x}^{(2)} \right) \mathrm{d}\xi + \frac{\partial }{\partial x}\left[ \int _z^\eta \left( U_{0} Z_{n}^{(2)}\right) \mathrm{d}\xi \right] \right) , Z_m^{(1)} \right\rangle ,\nonumber \\ G1_{mn}^{\text{2D }}= & {} - \left\langle \left( \int _z^\eta \left( U_0 Z_{n}^{(2)} \right) \mathrm{d}\xi \right) , Z_m^{(1)} \right\rangle , \nonumber \\ H1_{m}^{\text{2D }}= & {} g \left\langle 1,Z_m^{(1)} \right\rangle , \end{aligned}$$
(46)

and

$$\begin{aligned} A2_{n}^{\text{2D }}= & {} U_0, \nonumber \\ B2_{n}^{\text{2D }}= & {} Z_n^{(1)}(\eta _0) \frac{\partial \eta _0}{\partial x} + Z_{n_x}^{(2)}(\eta _0), \nonumber \\ C2_{n}^{\text{2D }}= & {} Z_n^{(2)}(\eta _0). \end{aligned}$$
(47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touboul, J., Belibassakis, K. A novel method for water waves propagating in the presence of vortical mean flows over variable bathymetry. J. Ocean Eng. Mar. Energy 5, 333–350 (2019). https://doi.org/10.1007/s40722-019-00151-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40722-019-00151-w

Keywords

Navigation