Skip to main content
Log in

Valorization of the Spent Biomass of Pleurotus mutilus Immobilized as Calcium Alginate Biobeads for Methylene Blue Biosorption

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

The production of antibiotics in Algeria generates large amounts of residual biomass that should be considered a valuable biosorbent rather than waste. The aim of this work was to assess the use of antibiotic by-product biomass as a biosorbent for methylene blue removal from wastewater. Therefore, the biosorption of the cationic dye methylene blue by spent biomass of Pleurotus mutilus immobilized as calcium alginate biobeads (CAB) was studied in batch and column modes. The maximum uptake capacity was found to be 23 mg/g at a pH value of 10. Methylene blue biosorption by CAB was found to be spontaneous and exothermic. The adsorption capacity of the used biobeads was regenerated in continuous mode by washing the CAB with HCl (0.5 M) solution. Globally, this work showed the high potential of CAB made with spent biomass of P. mutilus as a biosorbent for the treatment of water contaminated with methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdallah R, Taha S (2012) Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chem Eng J 195:69–76

    Article  Google Scholar 

  • Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem 38:89–99

    Article  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026. doi:10.1016/j.procbio.2004.04.008

    Article  Google Scholar 

  • Aksu Z, Ertuğrul S, Dönmez G (2010) Methylene Blue biosorption by Rhizopus arrhizus: effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chem Eng J 158:474–481. doi:10.1016/j.cej.2010.01.029

    Article  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2009) Application of a chemically modified green macro alga as a biosorbent for phenol removal. J Environ Manag 90:1877–1883. doi:10.1016/j.jenvman.2008.12.005

    Article  Google Scholar 

  • Ayla A, Çavuş A, Bulut Y, Baysal Z, Aytekin C (2013) Removal of methylene blue from aqueous solutions onto Bacillus subtilis: determination of kinetic and equilibrium parameters. Desalin Water Treat 51:7596–7603

    Article  Google Scholar 

  • Bai J et al (2013) Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads. J Environ Radioact 126:226–231. doi:10.1016/j.jenvrad.2013.08.010

    Article  Google Scholar 

  • Benadjemia M, Millière L, Reinert L, Benderdouche N, Duclaux L (2011) Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol 92:1203–1212. doi:10.1016/j.fuproc.2011.01.014

    Article  Google Scholar 

  • Bhatti HN, Akhtar N, Saleem N (2011) Adsorptive removal of methylene blue by low-cost Citrus sinensis Bagasse: equilibrium, kinetic and thermodynamic characterization. Arab J Sci Eng 37:9–18. doi:10.1007/s13369-011-0158-1

    Article  Google Scholar 

  • Chanie Y, Díaz I, Pérez E (2015) Kinetics and mechanisms of adsorption/desorption of the ionic liquid 1-buthyl-3-methylimidazolium bromide into mordenite. J Chem Technol Biotechnol. doi:10.1002/jctb.4632

    Google Scholar 

  • Chergui A, Kerbachi R, Junter G-A (2009) Biosorption of hexacyanoferrate (III) complex anion to dead biomass of the basidiomycete Pleurotus mutilus: Biosorbent characterization and batch experiments. Chem Eng J 147:150–160

    Article  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi:10.1016/j.biortech.2005.05.001

    Article  Google Scholar 

  • Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J Appl Chem 3:38–45

    Google Scholar 

  • Daou I, Zegaoui O, Chfaira R, Ahlafi H, Moussout H (2015) Physico-chemical characterization and kinetic study of methylene blue adsorption onto a Moroccan Bentonite. Int J Sci Res Public 5(5):293–301

    Google Scholar 

  • Das D, Basak G, Lakshmi V, Das N (2012) Kinetics and equilibrium studies on removal of Zinc (II) by untreated and anionic surfactant treated dead biomass of yeast: batch and column mode. Biochem Eng J 64:30–47

    Article  Google Scholar 

  • Dogan M, Abak H, Alkan M (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater 164:172–181. doi:10.1016/j.jhazmat.2008.07.155

    Article  Google Scholar 

  • Eftekhari S, Habibi-Yangjeh A, Sohrabnezhad S (2010) Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: thermodynamic and kinetic studies. J Hazard Mater 178:349–355. doi:10.1016/j.jhazmat.2010.01.086

    Article  Google Scholar 

  • El Jamal MM, Ncibi MC (2012) Biosorption of methylene blue by Chaetophora Elegans algae: kinetics, equilibrium and thermodynamic studies. Acta Chim Slov 59:24–31

    Google Scholar 

  • Forootanfar H, Moezzi A, Aghaie-Khozani M, Mahmoudjanlou Y, Ameri A, Niknejad F, Faramarzi MA (2012) Synthetic dye decolorization by three sources of fungal laccase. Iranian J Environ Health Sci Eng 9:27

    Article  Google Scholar 

  • Franca AS, Oliveira LS, Ferreira ME (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249:267–272. doi:10.1016/j.desal.2008.11.017

    Article  Google Scholar 

  • Freundlich H, Heller W (1939) The adsorption of cis-and trans-azobenzene. J Am Chem Soc 61:2228–2230

    Article  Google Scholar 

  • Fu F, Gao Z, Gao L, Li D (2011) Effective adsorption of anionic dye, alizarin red S, from aqueous solutions on activated clay modified by iron oxide. Ind Eng Chem Res 50:9712–9717

    Article  Google Scholar 

  • Güzel F, Aksoy Ö, Akkaya G (2012) Application of pomegranate (Punica granatum) pulp as a new biosorbent for the removal of a model basic dye (methylene blue). World Appl Sci J 20:965–975

    Google Scholar 

  • Hamissa AB, Brouers F, Ncibi M, Seffen M (2013) Kinetic modeling study on methylene blue sorption onto Agave americana fibers: fractal kinetics and regeneration studies. Sep Sci Technol 48:2834–2842

    Article  Google Scholar 

  • Hasan S, Srivastava P (2010) Biosorptive abatement of Cd2+ by water using immobilized biomass of arthrobacter sp.: response surface methodological approach. Ind Eng Chem Res 50:247–258

    Article  Google Scholar 

  • Hassan W, Farooq U, Ahmad M, Athar M, Khan MA (2013) Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab J Chem. doi:10.1016/j.arabjc.2013.05.002

    Google Scholar 

  • Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  Google Scholar 

  • Islam SMKN, Kurny ASW, Gulshan F (2015) Degradation of commercial dyes using mill scale by photo-Fenton. Environ Process 2:215–224. doi:10.1007/s40710-014-0055-1

    Article  Google Scholar 

  • Jain CK, Malik DS, Yadav AK et al. (2016) Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process 1–29. doi:10.1007/s40710-016-0143-5

  • Javed MA, Bhatti HN, Hanif MA, Nadeem R (2007) Kinetic and equilibrium modeling of Pb (II) and Co (II) sorption onto rose waste biomass. Sep Sci Technol 42:3641–3656

    Article  Google Scholar 

  • Kumar KV, Kumaran A (2005) Removal of methylene blue by mango seed kernel powder. Biochem Eng J 27:83–93. doi:10.1016/j.bej.2005.08.004

    Article  Google Scholar 

  • Kumar KV, Porkodi K (2007) Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum. J Hazard Mater 146:214–226. doi:10.1016/j.jhazmat.2006.12.010

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  • Nacèra Y, Aicha B (2006) Equilibrium and kinetic modelling of methylene blue biosorption by pretreated dead streptomyces rimosus: effect of temperature. Chem Eng J 119:121–125

    Article  Google Scholar 

  • Ofomaja A, Ho Y (2007) Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigments 74:60–66. doi:10.1016/j.dyepig.2006.01.014

    Article  Google Scholar 

  • Ouldmoumna A, Reinert L, Benderdouche N, Bestani B, Duclaux L (2013) Characterization and application of three novel biosorbents “Eucalyptus globulus, Cynara cardunculus, and Prunus cerasefera” to dye removal. Desalin Water Treat 51:3527–3538. doi:10.1080/19443994.2012.749583

    Article  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. doi:10.1016/j.jhazmat.2009.12.047

    Article  Google Scholar 

  • Sayğılı H, Akkaya Sayğılı G, Güzel F (2014) Using grape pulp as a new alternative biosorbent for removal of a model basic dye. Asia Pac J Chem Eng 9:214–225. doi:10.1002/apj.1761

    Article  Google Scholar 

  • Sharma YC, Upadhyay SN (2009) Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energ Fuels 23:2983–2988

    Article  Google Scholar 

  • Sikder MT, Mihara Y, Islam MS, Saito T, Tanaka S, Kurasaki M (2014) Preparation and characterization of chitosan–caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem Eng J 236:378–387. doi:10.1016/j.cej.2013.09.093

    Article  Google Scholar 

  • Tunali S, Ozcan A, Ozcan A, Gedikbey T (2006) Kinetics and equilibrium studies for the adsorption of Acid Red 57 from aqueous solutions onto calcined-alunite. J Hazard Mater 135:141–148. doi:10.1016/j.jhazmat.2005.11.033

    Article  Google Scholar 

  • Vijayaraghavan K, Mao J, Yun YS (2008) Biosorption of methylene blue from aqueous solution using free and polysulfone-immobilized Corynebacterium glutamicum: batch and column studies. Bioresour Technol 99:2864–2871. doi:10.1016/j.biortech.2007.06.008

    Article  Google Scholar 

  • Xia Y, Yao Q, Zhang W et al. (2015) Comparative adsorption of methylene blue by magnetic baker’s yeast and EDTAD-modified magnetic baker’s yeast: equilibrium and kinetic study. Arab Jo Chem

  • Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39. doi:10.1016/j.carbpol.2010.11.048

    Article  Google Scholar 

  • Yasmin A, Aditi A (2013) Degradation and decolouration of Amaranth dye by Photo-Fenton and Fenton Reagents: a comparative study. Int J Chem Sci 11:1277–1285

    Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Laboratoire d’Étude et de Développement des Techniques de Traitement et d’Épuration des Eaux et de Gestion Environnementale LEDTEGE in Kouba (Algeria) and a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Cabana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachi, M., Chergui, A., Selatnia, A. et al. Valorization of the Spent Biomass of Pleurotus mutilus Immobilized as Calcium Alginate Biobeads for Methylene Blue Biosorption. Environ. Process. 3, 413–430 (2016). https://doi.org/10.1007/s40710-016-0157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-016-0157-z

Keywords

Navigation