Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069
Article
Google Scholar
Kong X, Yu PS (2014) Brain network analysis: a data mining perspective. ACM SIGKDD Explor Newsl 15(2):30–38
MathSciNet
Article
Google Scholar
Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson Ser B 111(3):209–219
Article
Google Scholar
Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407
Article
Google Scholar
Chenevert TL, Brunberg JA, Pipe J (1990) Anisotropic diffusion in human white matter: demonstration with mr techniques in vivo. Radiology 177(2):401–405
Article
Google Scholar
McKeown MJ, Makeig S, Brown GG, Jung T-P, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188
Article
Google Scholar
Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari H, Wendland M, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445
Article
Google Scholar
Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541
Article
Google Scholar
Ogawa S, Lee T, Kay A, Tank D (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87(24):9868–9872
Article
Google Scholar
Ogawa S, Lee T-M, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78
Article
Google Scholar
Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G et al (2008) Heterogeneous data fusion for Alzheimer’s disease study. In: KDD. ACM, pp 1025–1033
Davidson I, Gilpin S, Carmichael O, Walker P (2013) Network discovery via constrained tensor analysis of fMRI data. In: KDD. ACM, pp 194–202
He L, Kong X, Yu PS, Ragin AB, Hao Z, Yang X (2014) Dusk: a dual structure-preserving kernel for supervised tensor learning with applications to neuroimages. In: SDM. SIAM
Zhou H, Li L, Zhu H (2013) Tensor regression with applications in neuroimaging data analysis. J Am Stat Assoc 108(502):540–552
MATH
MathSciNet
Article
Google Scholar
Tao D, Li X, Wu X, Hu W, Maybank SJ (2007) Supervised tensor learning. Knowl Inf Syst 13(1):1–42
Article
Google Scholar
Han X, Zhong Y, He L, Philip SY, Zhang L (2015) The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: Brain informatics and health. Springer, pp 156–166
Cichocki A, Mandic D, De Lathauwer L, Zhou G, Zhao Q, Caiafa C, Phan HA (2015) Tensor decompositions for signal processing applications: from two-way to multiway component analysis. Signal Process Mag 32(2):145–163
Article
Google Scholar
Zhao Q, Caiafa CF, Mandic DP, Chao ZC, Nagasaka Y, Fujii N, Zhang L, Cichocki A (2013) Higher order partial least squares (HOPLS): a generalized multilinear regression method. Pattern Anal Mach Intell 35(7):1660–1673
Article
Google Scholar
Ajilore O, Zhan L, GadElkarim J, Zhang A, Feusner JD, Yang S, Thompson PM, Kumar A, Leow A (2013) Constructing the resting state structural connectome. Front Neuroinform 7:30
Article
Google Scholar
Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878
Article
Google Scholar
Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42
Article
Google Scholar
Yang S, Sun Q, Ji S, Wonka P, Davidson I, Ye J (2015) Structural graphical lasso for learning mouse brain connectivity. In: KDD. ACM, pp 1385–1394
Papalexakis EE, Fyshe A, Sidiropoulos ND, Talukdar PP, Mitchell TM, Faloutsos C (2014) Good-enough brain model: challenges, algorithms and discoveries in multi-subject experiments. In: KDD. ACM, pp 95–104
Veeriah V, Durvasula R, Qi GJ (2015) Deep learning architecture with dynamically programmed layers for brain connectome prediction. In: KDD. ACM, pp 1205–1214
Wee C-Y, Yap P-T, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Resting-state multi-spectrum functional connectivity networks for identification of mci patients. PloS One 7(5):e37828
Article
Google Scholar
Wee C-Y, Yap P-T, Li W, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2011) Enriched white matter connectivity networks for accurate identification of mci patients. Neuroimage 54(3):1812–1822
Article
Google Scholar
Wee C-Y, Yap P-T, Zhang D, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang L, Shen D (2012) Identification of mci individuals using structural and functional connectivity networks. Neuroimage 59(3):2045–2056
Article
Google Scholar
Camastra F, Petrosino A (2008) Kernel methods for graphs: a comprehensive approach. In: Knowledge-based intelligent information and engineering systems. Springer, pp 662–669
Shervashidze N, Schweitzer P, Van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-lehman graph kernels. J Mach Learn Res 12:2539–2561
MATH
MathSciNet
Google Scholar
Gärtner T, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: Learning theory and Kernel machines. Springer, pp. 129–143
Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled graphs. ICML 3:321–328
Google Scholar
Horváth T, Gärtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: KDD. ACM, pp 158–167
Jie B, Zhang D, Gao W, Wang Q, Wee C, Shen D (2014) Integration of network topological and connectivity properties for neuroimaging classification. Biomed Eng 61(2):576
Google Scholar
Jin N, Young C, Wang W (2010) GAIA: graph classification using evolutionary computation. In: SIGMOD. ACM, pp 879–890
Cheng H, Lo D, Zhou Y, Wang X, Yan X (2009) Identifying bug signatures using discriminative graph mining. In: ISSTA. ACM, pp 141–152
Thoma M, Cheng H, Gretton A, Han J, Kriegel HP, Smola AJ, Song L, Philip SY, Yan X, Borgwardt KM (2009) Near-optimal supervised feature selection among frequent subgraphs. In: SDM. SIAM, pp 1076–1087
Yan X, Cheng H, Han J, Yu PS (2008) Mining significant graph patterns by leap search. In: SIGMOD. ACM, pp 433–444
Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM. IEEE, 721–724
Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures from graph data. In: Principles of data mining and knowledge discovery. Springer, pp 13–23
Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In: ICDM. IEEE, pp 313–320
Borgelt C, Berthold MR (2002) Mining molecular fragments: finding relevant substructures of molecules. In: ICDM. IEEE, pp 51–58
Huan J, Wang W, Prins J (2003) Efficient mining of frequent subgraphs in the presence of isomorphism. In: ICDM. IEEE, pp 549–552
Nijssen S, Kok JN (2004) A quickstart in frequent structure mining can make a difference. In: KDD. ACM, 647–652
Ranu S, Singh AK (2009) Graphsig: a scalable approach to mining significant subgraphs in large graph databases. In: ICDE. IEEE, pp 844–855
Jin N, Young C, Wang W (2009) Graph classification based on pattern co-occurrence. In: CIKM. ACM, pp 573–582
Zhu Y, Yu JX, Cheng H, Qin L (2012) Graph classification: a diversified discriminative feature selection approach. In: CIKM. ACM, pp 205–214
Cao B, Zhan L, Kong X, Yu PS, Vizueta N, Altshuler LL, Leow AD (2015) Identification of discriminative subgraph patterns in fMRI brain networks in bipolar affective disorder. In: Brain informatics and health. Springer, pp. 105–114
Kong X, Ragin AB, Wang X, Yu PS (2013) Discriminative feature selection for uncertain graph classification. In: SDM. SIAM, pp 82–93
Cao B, Kong X, Zhang J, Yu PS, Ragin AB (2015) Mining brain networks using multiple side views for neurological disorder identification. In: ICDM. IEEE
Cao B, Kong X, Kettering C, Yu PS, Ragin AB (2015) Determinants of HIV-induced brain changes in three different periods of the early clinical course: a data mining analysis. NeuroImage 9:75–82
Article
Google Scholar
Cao B, He L, Kong X, Yu PS, Hao Z, Ragin AB (2014) Tensor-based multi-view feature selection with applications to brain diseases. In: ICDM. IEEE, pp 40–49
Xu C, Tao D, Xu C (2013) A survey on multi-view learning. arXiv
Lanckriet GR, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27–72
MATH
Google Scholar
Varma M, Babu R (2009) More generality in efficient multiple kernel learning. In: ICML, pp 1065–1072
Cortes C, Mohri M, Rostamizadeh A (2009) Learning non-linear combinations of kernels. In: NIPS, pp 396–404
Sun S (2013) A survey of multi-view machine learning. Neural Comput Appl 23(7–8):2031–2038
Article
Google Scholar
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
MATH
Google Scholar
Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal Mach Intell 27(8):1226–1238
Article
Google Scholar
Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1–2):23–69
MATH
Article
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422
MATH
Article
Google Scholar
Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370
MATH
MathSciNet
Google Scholar
Shieh M-D, Yang C-C (2008) Multiclass SVM-RFE for product form feature selection. Expert Syst Appl 35(1):531–541
Article
Google Scholar
Maldonado S, Weber R (2009) A wrapper method for feature selection using support vector machines. Inf Sci 179(13):2208–2217
Article
Google Scholar
Feng Y, Xiao J, Zhuang Y, Liu X (2012) Adaptive unsupervised multi-view feature selection for visual concept recognition. In: ACCV, pp. 343–357
Fang Z, Zhang ZM (2013) Discriminative feature selection for multi-view cross-domain learning. In: CIKM. ACM, pp 1321–1330
Wang H, Nie F, Huang H (2013) Multi-view clustering and feature learning via structured sparsity. In: ICML, pp 352–360
Wang H, Nie F, Huang H, Ding C (2013) Heterogeneous visual features fusion via sparse multimodal machine. In: CVPR, pp 3097–3102
Miranda J, Montoya R, Weber R (2005) Linear penalization support vector machines for feature selection. In: Pattern recognition and machine intelligence. Springer, pp 188–192
Tang J, Hu X, Gao H, Liu H (2013) Unsupervised feature selection for multi-view data in social media. In: SDM. SIAM, pp 270–278
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289
Article
Google Scholar
Huang S, Li J, Ye J, Wu T, Chen K, Fleisher A, Reiman E (2011) Identifying Alzheimer’s disease-related brain regions from multi-modality neuroimaging data using sparse composite linear discrimination analysis. In: NIPS, pp. 1431–1439
Xiang S, Yuan L, Fan W, Wang Y, Thompson PM, Ye J (2013) Multi-source learning with block-wise missing data for Alzheimer’s disease prediction. In: KDD. ACM, pp 185–193
Smalter A, Huan J, Lushington G (2009) Feature selection in the tensor product feature space. In: ICDM, pp 1004–1009
Cao B, Zhou H, Yu PS (2015) Multi-view machines. arXiv
Cao B, Kong X, Yu PS (2014) Collective prediction of multiple types of links in heterogeneous information networks. In: ICDM. IEEE, pp 50–59
Kong X, Cao B, Yu PS (2013) Multi-label classification by mining label and instance correlations from heterogeneous information networks. In: KDD. ACM, pp 614–622