Skip to main content
Log in

Some remarks about \( \rho \)-regularity for real analytic maps

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we discuss the concept of \(\rho \)-regularity of analytic map germs and its close relationship with the existence of locally trivial smooth fibrations, known as the Milnor tube fibrations. The presence of a Thom regular stratification or the Milnor condition (b) at the origin, indicates the transversality of the fibers of the map G with respect to the levels of a function \(\rho \), which guarantees \(\rho \)-regularity. Consequently, both conditions are crucial for the presence of fibration structures. The work aims to provide a comprehensive overview of the main results concerning the existence of Thom regular stratifications and the Milnor condition (b) for germs of analytic maps. It presents strategies and criteria to identify and ensure these regularity conditions and discusses situations where they may not be satisfied. The goal is to understand the presence and limitations of these conditions in various contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This article has no associated data.

Notes

  1. The latter condition is known as the Milnor condition (b) at the origin.

  2. Despite being classical results, proofs are generally not found in the literature, except perhaps in more recent works, such as [58, Theorem 4.14, Proposition 1.2.26, Proposition 4.3.2] and [43, Theorem 2.2, Lemma 2.3, Proposition 3.1, and Proposition 4.2], where the authors define and consider \(\rho \)-regularity, the Milnor condition (b), and the existence of Thom stratification in a more general context where the dimension of the discriminant is positive.

  3. See Theorem 2.4.

  4. Or simply, G is Thom regular.

  5. In other words, if \(W_\alpha \) and \(W_\beta \) are strata of \(\mathbb {W}\) such that \(W_\alpha \subset V_G\) and \(W_\alpha \subset {\overline{W}}_\beta \), then the pair \((W_\beta , W_\alpha )\) satisfies the Thom \((\mathrm{{a}}_G)\)-regularity condition.

  6. See [29, Theorem 1.2.1]

  7. See Section 4.1 for definition.

  8. See Remark 4.5 for definition.

  9. In fact, it was shown in [52, Theorem 2.3] that the hypothesis “\(\mathrm{{Disc\hspace{2pt}}}(f,g) \) only contains curves tangent to the coordinate axes” is equivalent to \( \mathrm{{Disc\hspace{2pt}}}f{\bar{g}} = \{0\} \)

  10. Now, since \(\langle (0,0,\pm 1), (0, \pm 1, 0) \rangle = 0\), we have \((0,0,\pm 1) \in {{\mathcal {T}}}^{\perp }\). In other words, \({{\mathcal {T}}}^{\perp } \not \subset \left( {{\mathcal {T}}}_{p}W_i\right) ^{\perp }\). Consequently, \(\text {T}_{p}W_i \not \subset {{\mathcal {T}}}\), as previously shown in Example 3.12.

  11. Actually, as “any Whitney stratification” we mean “any reduced Whitney stratification” in the following sense. Reduced means: let \( \mathbb {W}=\{W_\alpha \} \) be a Whitney stratification and suppose \( W_1 \) and \( W_2 \) are two strata such that \( W_2 \subset \overline{W_1} \) and \( W_1 \cup W_2 \) is also a smooth manifold so that two strata can be put one keeping regularity of Whitney stratification.

References

  1. A’Campo, N.: Le nombre de Lefschetz d’une monodromie. Indagat. Math. 35, 113–118 (1973)

    Article  MathSciNet  Google Scholar 

  2. Araújo dos Santos, R. N., Chen, Y., Tibăr, M. : Real polynomial maps and singular open books at infinity. Math. Scand. 118, 57-69, (2016)

  3. Araújo dos Santos, R. N., Ribeiro, M. F.: Geometrical conditions for the existence of a Milnor vector field. Bull. Braz. Math. Soc. (N.S.) 52, no. 4, 771-789, (2021)

  4. Araújo dos Santos, R. N., Tibăr, M.: Real map germs and higher open book structures. Geom. Dedicata 147, 177-185, (2010)

  5. Araújo dos Santos, R. N., Ribeiro, M.F., Tibăr, M.: Fibrations of highly singular map germs. Bull. Sci. Math. 155, 92-111 (2019). online, https://doi.org/10.1016/j.bulsci.2019.05.001

  6. Araújo dos Santos, R. N., Ribeiro, M.F., Tibăr, M.: Milnor-Hamm sphere fibrations and the equivalence problem. J. Math. Soc. Japan, 72, no. 3, 945–957 (2020)

  7. Araújo dos Santos, R. N., Dreibelbis, D., do Espirito Santo, A. A., Ribeiro, M. F.: A quick trip through fibration structures. Jour. Sing., 22 (2022), 134-158

  8. Araújo dos Santos, R. N., Chen, Y., Tibăr, M. Singular open book structures from real mappings. Central European Journal of Mathematics 11(5) (2013): 817-828

  9. Araújo dos Santos, R. N., Dreibelbis, D., Ribeiro, M. F, Santamaria, I. G., Tameness conditions and the Milnor Fibrations for Composite singularities, arXiv:2307.03791

  10. Bekka, K.: C-régularité et trivialité topologique. Singularity theory and its applications, Part I (Coventry, 1988/1989), 42-62, Lecture Notes in Math., 1462, Springer, Berlin, (1991)

  11. Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Publications Mathématiques de l’IHÉS 67, 5–42 (1988)

    Article  MathSciNet  Google Scholar 

  12. Bobadilla, J.F., Menegon, A.: The boundary of the Milnor fibre of complex and real analytic non-isolated singularities. Geometriae Dedicata 173(1), 143–162 (2014)

    Article  MathSciNet  Google Scholar 

  13. Bodin, A., Pichon, A., Seade, J.: Milnor fibrations of meromorphic functions. J. Lond. Math. Soc. 2(80), 311–325 (2009)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.: Bifurcation Values of Mixed Polynomials and Newton Polyhedra. Ph.D. thesis, Université de Lille 1, Lille, (2012)

  15. Chen, Y.: Milnor fibration at infinity for mixed polynomials. Cent. Eur. J. Math. 12, 28–38 (2014)

    MathSciNet  Google Scholar 

  16. Chen, Y., Tibăr, M.: Bifurcation values and monodromy of mixed polynomials. Math. Res. Lett. 19, 59–79 (2012)

    Article  MathSciNet  Google Scholar 

  17. Chen, Y., Tibăr, M.: On singular maps with local fibration. Rev. Roumaine math. Pures appl, 9-17, (2023)

  18. Cisneros-Molina, J.L., Seade, J., Snoussi, J.: Milnor fibrations and d-regularity for real analytic singularities. Internat. J. Math. 21(4), 419–434 (2010)

    Article  MathSciNet  Google Scholar 

  19. Cisneros-Molina, J.L., Seade, J., Snoussi, J.: Milnor fibrations and the concept of d-regularity for analytic map germs. Contemporary Mathematics, American Mathematical Society 569, 01–28 (2012)

    Article  MathSciNet  Google Scholar 

  20. Cisneros-Molina, J-L.: Join theorem for polar weighted homogeneous singularities. Singularities II, Contemp. Math., Amer. Math. Soc., Providence, RI, 475, 43-59, (2008)

  21. Cisneros-Molina, J., Menegon, A., Seade, J., Snoussi, J.: Fibration theorems a la Milnor for analytic maps with non-isolated singularities. Sao Paulo Journal of Mathematical Sciences, (2023)

  22. Cisneros-Molina, J-L., Grulha, N. Seade, J.: On the topology of real analytic maps. Internat. J. Math. 25 (2014), no. 7, 145-154

  23. Conejero, G.; Tráng, L. D., Ballesteros, N.:Thom condition and monodromy Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., (2022)

  24. Dutertre, N., Araújo dos Santos, R. N.: Topology of Real Milnor Fibrations for Non-Isolated Singularities. International Mathematics Research Notices, Volume 2016, Issue 16, (2016), Pages 4849-4866, https://doi.org/10.1093/imrn/rnv286

  25. Dias, L.R.G., Ruas, M.A.S., Tibăr, M.: Regularity at infinity of real mappings and a Morse-Sard theorem. Journal of Topology 5(2), 323–340 (2012)

    Article  MathSciNet  Google Scholar 

  26. Eyral, C., Oka, M.: Whitney regularity and Thom condition for families of non-isolated mixed singularities. Journal of the Math. Society of Japan, 70, 1305-1336, (2018)

  27. Gaffney, T.: Non-isolated complete intersection singularities and the A\(_{f}\)-condition. Singularities I. Vol. 474. Amer. Math. Soc. Providence, RI, (2008). 85-93

  28. Gibson, C. G., et al.: Topological stability of smooth mappings. Vol. 552. Springer, (2006)

  29. Hamm, H. A.: Un thèoreme de Zariski du type de Lefschetz. Annales scientifiques de l’École Normale Supérieure. Vol. 6. No. 3. (1973)

  30. Hansen, N. B.: Milnor’s Fibration Theorem for Real Singularities. MS thesis. (2014)

  31. Henry, J.-P., Merle, M., Sabbah, C.: Sur la condition de Thom stricte pour un morphisme analytique complexe. Annales scientifiques de l’École Normale Supérieure. 17(2), 227–268 (1984)

    Article  MathSciNet  Google Scholar 

  32. Hironaka, H.: Stratification and flatness. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 199–265. Sijthoff and Noordhoff, Alphen aan den Rijn, (1977)

  33. Inaba, K., Kawashima, M., Oka, M.: Topology of mixed hypersurfaces of cyclic type. Journal of the Math. Society of Japan, 70, 387-402 (2018)

  34. Iomdin, I.N.: Some properties of isolated singularities of real polynomial mappings. Mathematical Notes of the Academy of Sciences of the USSR 13, 342–345 (1973). https://doi.org/10.1007/BF01146571

    Article  MathSciNet  Google Scholar 

  35. Joiţa, C., Tibăr, M.: Images of analytic map germs and singular fibrations. European Journal of Mathematics 6(3), 888–904 (2020)

    Article  MathSciNet  Google Scholar 

  36. Lojasiewicz, S., Zurro, M.A.: On the gradient inequality. Bulletin of the Polish Academy of Sciences-Mathematics 47(2), 143–146 (1999)

    MathSciNet  Google Scholar 

  37. Looijenga, E.: A note on polynomial isolated singularities. Indagationes Mathematicae (Proceedings). Vol. 74. North-Holland, 33 (1971), 418-421

  38. Looijenga, E.: Isolated singular points on complete intersections. No. 77. Cambridge University Press, (1984)

  39. Massey D. B.: Real analytic Milnor fibrations and a strong Łojasiewicz inequality in Real and complex singularities. Real and complex singularities, 268-292, London Math. Soc. Lecture Note Ser., 380, Cambridge Univ. Press, Cambridge, (2010)

  40. Milnor, J. W.: Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1968)

  41. Munkres, J.R.: Topology: a first course, Prentice-Hall, 23, (1975)

  42. Mather, J.: Notes on Topological Stability. Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 475–506

  43. Menegon, A.: Thom property and Milnor-Lê fibration for analytic maps. Math. Nachr. 296, 3481–3491 (2023)

    Article  MathSciNet  Google Scholar 

  44. Menegon, A., Seade, J.: On the Lê-Milnor fibration for real analytic maps. Math. Nachr. 290(2–3), 382–392 (2016)

    MathSciNet  Google Scholar 

  45. Oka, M.: Topology of polar weighted homogeneous hypersurface. Kodai Math. J. 31, 163–182 (2008)

    Article  MathSciNet  Google Scholar 

  46. Oka, M.: Non degenerate mixed functions. Kodai Math. J. 33, 1–62 (2010)

    Article  MathSciNet  Google Scholar 

  47. Oka, M.: On Milnor fibrations of mixed functions, \(a_{f}\)-condition and boundary stability. Kodai Math. J. 38, 581–603 (2015)

    Article  MathSciNet  Google Scholar 

  48. Oka, M.: Łojasiewicz exponents of non-degenerate holomorohic and mixed functions. Kodai Mathe. J. 41, 620–651 (2018)

    Google Scholar 

  49. Oka, M.: On the connectivity of Milnor fiber for mixed functions. AMS ebook Collections, A Panorama of Singularities, Contemporary Mathematics, Vol. 742 (2020)

  50. Oka, M.: On the Milnor fibration for \( f{\bar{g}} \). J. Math. Soc. Japan 73(2), 649–669 (2021)

    MathSciNet  Google Scholar 

  51. Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indagationes Mathematicae 3(3), 323–335 (1992)

    Article  MathSciNet  Google Scholar 

  52. Parameswaran, A.J., Tibăr, M.: Thom irregularity and Milnor tube fibrations. Bulletin des Sciences Mathématiques 143, 58–72 (2018)

    Article  MathSciNet  Google Scholar 

  53. Pichon, A.: Real analytic germs \(f{\bar{g}}\) and open-book decompositions of the 3-sphere. Internet. J. Math. 16, 1–12 (2005)

    Article  Google Scholar 

  54. Pichon, A., Seade, J.: Real singularities and open-book decompositions of the 3-sphere. Ann. Fac. Sci. Toulouse Math. 12, 245–265 (2003)

    Article  MathSciNet  Google Scholar 

  55. Pichon, A., Seade, J.: Fibred multilinks and singularities \(f{\bar{g}}\). Math. Ann. 342, 487–514 (2008)

    Article  MathSciNet  Google Scholar 

  56. Pichon, A., Seade, J.: Milnor fibrations and the Thom property for maps \(f{\bar{g}}\). J. Singul. 3, 144–150 (2011)

    MathSciNet  Google Scholar 

  57. Ribeiro, M.F.: New classes of mixed functions without Thom regularity. Bulletin of the Brazilian Mathematical Society, New Series 51(1), 317–332 (2020)

    Article  MathSciNet  Google Scholar 

  58. Ribeiro, M.F.: Singular Milnor Fibrations, PhD Thesis, Instituto de Ciências Matemáticas e de Computação, São Carlos. University of São Paulo, February (2018). https://doi.org/10.11606/T.55.2018.tde-06072018-115031,http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06072018-115031/en.php

  59. Ribeiro, M. F., do Espírito Santo, A. A. R., Reis, F. P. P.: Milnor-Hamm fibration for mixed maps, Bull. Braz. Math. Soc. (N.S.) 52, no. 3, 739-766, (2021)

  60. Ribeiro, M., Araújo dos Santos, R. N., Dreibelbis, D., Murphy, G.: Harmonic morphisms and their Milnor fibrations. Annali di Matematica 202, 2035?2048 (2023). https://doi.org/10.1007/s10231-023-01311-4

  61. Ruas, M.A.S., Seade, J., Verjovsky, A.: On Real Singularities with a Milnor Fibrations, pp. 191–213. Trends Math, Birkhäuser, Basel (2002)

    Google Scholar 

  62. Sabbah, C.: Morphismes analytiques stratifiés sans éclatement et cycles évanescents. Astérisque 101(102), 286–319 (1983)

    Google Scholar 

  63. Sabbah, C.: Morphismes analytiques stratifiés sans éclatement et cycles évanescents. Analysis and topology on singular spaces, II, III - Soc. Math. France, (1983), 286-319

  64. Seade, J.: Open book decompositions associated to holomorphic vector fields. Bol. Soc. Mat. Mexicana 3, 323–336 (1997)

    MathSciNet  Google Scholar 

  65. Seade, J.: On Milnor’s fibration theorem and its offspring after 50 years. Bull. Amer. Math. Soc. 56(2), 281–348 (2019)

    Article  MathSciNet  Google Scholar 

  66. Thom, R.: Les structures différentiables des boules et des spheres. Colloque de Géométrie Différentielle Globale, Bruxelles. (Bruxelles, 1958) pp. 27-35 Centre Belge Rech. Math., Louvain, (1959)

  67. Thom, R.: Ensembles et morphismes stratifiés. Bulletin of the American Mathematical Society 75(2), 240–284 (1969)

    Article  MathSciNet  Google Scholar 

  68. Tibăr, M.: Regularity at infinity of real and complex polynomial functions. Singularity theory (Liverpool, 1996) (1999): 249-264. London Math. Soc. Lecture Note Ser., 263, Cambridge Univ. Press, Cambridge, 1999

  69. Tibăr, M.: Polynomials and vanishing cycles. No. 170. Cambridge University Press, (2007)

  70. Tibăr, M.: Regularity of real mappings and non-isolated singularities. Top. of Real Sing. and Mot. Asp., 9, 2933-2934, (2012)

  71. Tráng, L. D.: Some remarks on relative monodromy. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 397-403. Sijthoff and Noordhoff, Alphen aan den Rijn, (1977)

  72. Tráng, L. D.: The Thom condition . Dalat University Journal of Science, (2022)

  73. Tráng, L. D.: La monodromie n’a pas de points fixes. In: J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22.3 (1975), pp. 409-427

Download references

Acknowledgements

Maico Ribeiro is Funded by CNPQ/MCTI grant number 408147/2023-7 and CAPES grant number 88887.909401/2023-00. Ivan Santamaria is Funded by CAPES 88887.500400/2020-00. Thiago da Silva is Funded by CAPES grant number 88887.909401/2023-00 and CAPES grant number 88887.897201/2023-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Santamaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M., Santamaria, I. & da Silva, T. Some remarks about \( \rho \)-regularity for real analytic maps. Res Math Sci 11, 40 (2024). https://doi.org/10.1007/s40687-024-00453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-024-00453-y

Navigation