Skip to main content
Log in

Affine homogeneous varieties and suspensions

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

An algebraic variety X is called a homogeneous variety if the automorphism group \({{\,\textrm{Aut}\,}}(X)\) acts on X transitively, and a homogeneous space if there exists a transitive action of an algebraic group on X. We prove a criterion of smoothness of a suspension to construct a wide class of homogeneous varieties. As an application, we give criteria for a Danielewski surface to be a homogeneous variety and a homogeneous space. Also, we construct affine suspensions of arbitrary dimension that are homogeneous varieties but not homogeneous spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arzhantsev, I.: On images of affine spaces. Indag. Math. (N.S.) 34(4), 812–819 (2023)

    Article  MathSciNet  Google Scholar 

  2. Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox rings. In: Cambridge Studies in Adv. Math., vol. 144. Cambridge University Press, New York (2015)

  3. Arzhantsev, I., Flenner, H., Kaliman, S., Kutzschebauch, F., Zaidenberg, M.: Flexible varieties and automorphism groups. Duke Math. J. 162(4), 767–823 (2013)

    Article  MathSciNet  Google Scholar 

  4. Arzhantsev, I., Kuyumzhiyan, K., Zaidenberg, M.: Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity. Sb. Math. 203(7), 923–949 (2012)

    Article  MathSciNet  Google Scholar 

  5. Arzhantsev, I., Shakhmatov, K., Zaitseva, Y.: Homogeneous algebraic varieties and transitivity degree. Proc. Steklov Inst. Math. 318, 13–25 (2022)

    Article  MathSciNet  Google Scholar 

  6. Brion, M.: Some structure theorems for algebraic groups. In: Can, M.B. (ed) Algebraic Groups: Structure and Actions. Proceedings of Symposia in Pure Mathematics, vol. 94, pp. 53–126 (2017)

  7. Brion, M., Samuel, P., Uma, V.: Lectures on the Structure of Algebraic Groups and Geometric Applications. Hindustan Book Agency, New Delhi (2013)

    Book  Google Scholar 

  8. Daigle, D.: Locally nilpotent derivations and Danielewski surfaces. Osaka J. Math. 41(1), 37–80 (2004)

    MathSciNet  Google Scholar 

  9. Demazure, M.: Sous-groupes algebriques de rang maximum du groupe de Cremona. Ann. Sci. Éc. Norm. Supér. 3, 507–588 (1970)

    Article  MathSciNet  Google Scholar 

  10. Donzelli, F.: Algebraic density property of Danilov–Gizatullin surfaces. Math. Z. 272(3–4), 1187–1194 (2012)

    Article  MathSciNet  Google Scholar 

  11. Dubouloz, A.: Completions of normal affine surfaces with a trivial Makar–Limanov invariant. Mich. Math. J. 52(2), 289–308 (2004)

    Article  MathSciNet  Google Scholar 

  12. Flenner, H., Kaliman, S., Zaidenberg, M.: On the Danilov–Gizatullin isomorphism theorem. Enseign. Math. (2) 55(3–4), 275–283 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gizatullin, M.: On affine surfaces that can be completed by a nonsingular rational curve. Math. USSR-Izv. 4(4), 787–810 (1970)

    Article  Google Scholar 

  14. Gizatullin, M.: Quasihomogeneous affine surfaces. Math. USSR-Izv. 5(5), 1057–1081 (1971)

    Article  MathSciNet  Google Scholar 

  15. Gizatullin, M.: Affine surfaces which are quasihomogeneous with respect to an algebraic group. Math. USSR-Izv. 5(4), 754–769 (1971)

    Article  Google Scholar 

  16. Gizatullin, M., Danilov, V.: Automorphisms of affine surfaces. II. Math. USSR-Izv. 11(1), 51–98 (1977)

    Article  MathSciNet  Google Scholar 

  17. Grosshans, F.: Algebraic Homogeneous Spaces and Invariant Theory Lect., Notes in Math. Springer, Berlin (1997)

    Book  Google Scholar 

  18. Humphreys, J.: Linear Algebraic Groups. Grad. Texts in Math., vol. 21. Springer, New York (1975)

  19. Kaliman, S., Zaidenberg, M.: Affine modifications and affine hypersurfaces with a very transitive automorphism group. Transform. Groups 4(1), 53–95 (1999)

    Article  MathSciNet  Google Scholar 

  20. Kovalenko, S.: Transitivity of automorphism groups of Gizatullin surfaces. Int. Math. Res. Not. IMRN 2015(21), 11433–11484 (2015)

    Article  MathSciNet  Google Scholar 

  21. Kraft, H.: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig (1984)

  22. Kuyumzhiyan, K., Mangolte, F.: Infinitely transitive actions on real affine suspensions. J. Pure Appl. Algebra 216(10), 2106–2112 (2012)

    Article  MathSciNet  Google Scholar 

  23. Makar-Limanov, L.: On groups of automorphisms of a class of surfaces. Israel J. Math. 69, 250–256 (1990)

    Article  MathSciNet  Google Scholar 

  24. Makar-Limanov, L.: On the group of automorphisms of a surface \(x^ny = P(z)\). Israel J. Math. 121, 113–123 (2001)

    Article  MathSciNet  Google Scholar 

  25. Nagata, M.: Note on orbit spaces. Osaka Math. J. 14(1), 21–31 (1962)

    MathSciNet  Google Scholar 

  26. Onishchik, A., Vinberg, E.: Lie Groups and Algebraic Groups. Springer Series in Soviet Mathematics. Springer, Berlin (1990)

  27. Popov, V.: Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group. Math. USSR-Izv. 7(5), 1039–1056 (1973)

    Article  Google Scholar 

  28. Popov, V.: Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. Math. USSR-Izv. 8(2), 301–327 (1974)

    Article  Google Scholar 

  29. Popov, V., Vinberg, E.: Invariant theory. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry IV. Springer, Berlin, Heidelberg, New York (1994)

    Google Scholar 

  30. Shafarevich, I.: Basic Algebraic Geometry 1. Springer, Berlin, Heidelberg (2013)

  31. Timashev, D.: Homogeneous Spaces and Equivariant Embeddings. Encyclopaedia Math. Sciences, vol. 138. Springer, Berlin, Heidelberg (2011)

  32. Vakil, R.: The Rising sea: foundations of algebraic geometry notes (2023). http://math.stanford.edu/~vakil/216blog/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Zaitseva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement 075-15-2022-289 date 06/04/2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhantsev, I., Zaitseva, Y. Affine homogeneous varieties and suspensions. Res Math Sci 11, 27 (2024). https://doi.org/10.1007/s40687-024-00438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-024-00438-x

Keywords

Mathematics Subject Classification

Navigation